
AD-A091 029 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A--ETC FIG 9/2

ONMTTOAUG RI A T ACREE DAAG29-8R C 0120

UNCLASSIFIED SIT-ICS-80/12 NL

I 2fffffffffff l

I fllflfoflfl....f

111111 A.

NATIONAL BUREAU OF S 3ANDARDS-1963-A

11_1 L MA

..

2V v

, X

® LEYEV
I GIT-ICS-8 /1,2/

Tro j .Yy/Acree, _J4

DTI

EECTE

1 91 JAugboMWO' (~O u

[School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

toksupported in part by U.S. Armry Research Office, Grant EG29-8-C-Sl 20,
Iand by Office of Naval Research, Grant #N00014-79-C-0231. N Qi 1 /.-, 1- - "

IAypwmd fot public W~low

L.
1.

I ON .UTATION

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

by

Allen Troy Acree, Jr.

In Partial Fulfillmentf of the Requirements for the Degree of

Doctor of Philosophy

in the School of Information and Computer Science

Ac1ession For

NTIS GRA&I
DTIC TAB

Justificatlo

August, 1Q80
By ,

, [
--~~~AvaiabLt CdlDistributon/....b I/-a

uAvailability Codes
1. -Avail anzd/or

Dist Special

4

L

__n_.... . _____ ~-l -- i-- -- i- -
-- -.

..
_111__..

..

_lan.

..

__

I J...

ON MUTATION

Approved:

':
Albert B dr's

j Riuchard LBar-c-

u VFredrick
Sayward

A [~ ~~Date approved by C~airman_____

mush.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS. i

Chapter

I. INTRODUCTION TO PROGRAM' VALIDATION 1

Automated Aids for Program Validation
other Approaches to Validation I

It. CONCEPTS OF MUTATION ANALYSIS ,....13

Conditional Correctness
?utagenic operators
Competent Programmer Assumption
Coupling Effect
Equivalence of Mutants

111. THE COBOL MUTATION SYSTEM..*.................. 24$;~ Design of Mutation Systems
A Case Study
Cobol as a Language of Study
Programs used In the Study
Test Data Generation

Empirical Complexity of Mutation Analysis

IV * EXPERIMENTS ON THE COUPLING HYPOTHESIS 35 i
I. Random Pairs of Mutants

Correlated Pairs of Mutants [
* Higher Order Mutation

Coupling and Complexity

4V. EQUIVALENCE OF MUTANTS*.......o................ 51

Human Evaluation of Equivalence

4* Pairs of Equivalent Mutants

ITW

iii

VI. SUBSETS OF MUTANTS................... 57

Random Selection of Mutants
Efficiency of Mutagenic Operators

VII. CONCLUSIONS AND SUGGESTIONS FOR

FURTHER STUDY 66

APPENDIX A -- CMS.1 Users' Manual.........................6Q

APPENDIX B -- CMS.1 Internal Specifications...............87

APPENDIX C -- CMS. 1 Script. 10

APPENDIX D -- FMS.1 Script on CMS.1 Module....... 118

APPENDIX E-- Statistical Background.....................133

APPENDIX F-- Listings of Programs Studied...............140

BIBLIOGRAPHY175

I:t

L
V

ACKNOWLEDGEMENTS [I

The author would like to thank the Graduate Division

for the waiver of certain format requirements so that this

thesis could be prepared on the PRIME 400 under the RUNOFF

text processing system. The author also wishes to express I
his gratitude to Prof. Frederick Sayward for his helpful

comments on the, preliminary design of the Cobol Mutation

System, as well as for advice on the management of its

implementation, and to Jeanne Hanks for her help in

implementing the system and its later functional

enhancements, and especially to his advisor, Prof. Richard

DeMillo, for his thoughtful guidance and encouragement.

This research was supported in part by the US Army Institute

for Research in management Information and Computer Science,

ARO Grant No. DAAG22-78-0121 and the Office of Naval

Research, Grant No. N00014-74-C-0231.

I.

2

.1F;I

F -T e4 -T -"...... "-

K. V

LIST OF TABLES

Table 1. Effects of Test Size, Selection Method,
and Program on Test Adequacy....................7

Table 2. ANOVA Table for
Size-Selecton-Program Experiment 8

Table 3. Mutation Statistics on the Six Programs........32

Table 4. 50,000 Random Pairs of Mutants
for Each Program.. 38

Table 5. 10,000 Correlated Pairs of Mutants
for Each Program.41

Table G. 20,000 Mutants of Order 2,3,4, and 5
for Each Program

Table 7. Average Statements Executed Before Failure

on Programs with Multiple Order Mutations 44

Table 3. Comlexity and Coupling 49

Table 9. Human Evaluation oi Equivalence 53

Table 10. Pairs of Equivalent Mutants 56

Table 11. Reduced Power Mutation Analysis 58

Table 12. Test Strength Using 10% of Mutants 59

Table 13. Mutagenic Operator Efficiencies 9.63

4I
It ;

E~J-~ ~

L..J _________~1 '

"V1

LIST OF ILLUSTRATIONS

Figure 1. Log-Log Graph of Program Size vs. Number
of Mutants and Number Equivalent 34

Figure 2. Inverse of Time to Failure
vs. Number of Seeded Errors...................45

Figure 3. 951 Confidence Intervals on z*100,000
vs. Number of Branches. 50

IJ
-i

"Ii

,/.

iI

* Ii

I ,
.*-.*-f, __ _ _ iI

CHAPTER I

INTRODUCTION

Program testing has been practiced as long as has

programming itself# in spite of the general confession that

testing can never prove in any absolute sense that a program

is correct. Two facts are responsible for the popularity of

testing. The first is that testing has a tendency to

uncover program errors, and that the more systematic the

testing, the stronger this tendency. The second is that a

1. program that is not completely correct is not necessarily

unreliable in a given operating environment, and that even a

program that is not completely reliable will usually not be

j completely worthless to its users. Those responsible for

software system development are charged with deciding how

much they are willing to pay for a given increase in

reliability. The challenge for research is therefore to

produce a testing method that is (1) more effective at

uncovering errors and (2) less expensive to apply. Mutation

analysis has been put forward as such a method (1,11,12,51.

Working mutation systems have demonstrated that mutation

analysis can be performed at an attractive cost on realistic

programs. (See Appendices A-D.) In this work, the

AK effectiveness of the method Is studied by experiments with

2

programs in the target application spaces. Most of our

target programs are in Cobol. Cobol was chosen as a

language of study for several reasons. A pilot system had

already been implemented for Fortran (5,111, and preliminary

results on testing small numerical subroutines were

encouraging. A. more complete Fortran system was being

developed concurrently with the development of the Cobol i
system on which this work is based. we were interested in

knowing if the mutation concept would be as useful in a

language like Cobol as it had been in Fortran, with Cobol's

different concepts of data structures, and with input and

output, which had never been included In the Fortran

systems. (193 For a description of the Cobol system and its

treatment of the data division and input and output, see

Appendix A. We were also interested in a system that would

allow us to collect empirical data on programming and

testing practice and effectiveness. Since Cobol is widely

used, many programs are available for study. Since

programming in Cobol Is often done under strict

regimentation, it was expected that we can obtain complete

packages consisting of programs along with their test data

and error histories.

Software system development has been described in 1221

as a sequence of steps leading from problem definition to

software, with corresponding validation tasks relating the

result of each step to previous steps. The major steps are 1

3

(1) System requirements definition

(2) System functional specifications

(3) Software requirements definition

(4) Software functional specifications

(5) Software implementation

The mutation analysis methodology examined in this

work has as its goal validation of the last stage, software

implementation. A~s such it overlaps some proposed

validation methods, and complements others. The following

sections outline some of these techniques.

Automated Aids for Software Validation

The present work deals with mutation analysis, which

is an automated aid for software validation. It is useful

to survey several such aids designed for related purposes.

All of th~ese tools have as their goal an increase in

confidence that a given software product will function as

desired under normal operating conditions.

Static Code Examination Tools.

The software can be examined statically (without execution)

for some types of errors.

Syntax Checkers -Compi..ers. The use of a compiler to

detect syntax errors is so common that we usually do not

think of it as a validation tool. The errors that are

4 detectable by a simple syntax check are usually limited to

4

those such as the use of a variable of one type where

another type is required, or the misspelling of a variable

name, resulting in an undeclared variable, or parameter

mismatch in subroutine calls (34). Languages such as

Fortran that permit Implicitly declared variables and

separate subroutine compilation restrict the amount of

* error-detection that a compiler can do.

Standards Enforcers. Some Fortran compilers can be

Invoked with optional parameters that force the compiler to

treat undeclared variables as errors (281. This is an

example of the use of automatic verification of

extra-syntactic rules called standards that are thought to

be useful in avoiding the introduction of errors into

software in the first place. These standards may have the

form of additional syntax rules (e.g. all variables must be

declared), the deletion of otherwise legal program

constructs (e.g. ALTER or COTO), or naming or documentation

conventions.f

Structural Analysis. A more sophisticated form af

static analysis can give some information about the dynamic

behavior of a piece of software. Structural analysis by a

system such as DAVE (24,251 can produce diagnoses such as

(1) The variable X is referenced before it is

defined along all flows of control in the module.

(Always indicates an error.)

I-

5

(2) The variable X is referenced before it is

defined along some flows of control In the module.

(Indicates an error, if any of those control paths

are actually executable.)

(3) The variable X is defined but not later

referenced along any control path. (This

indicates an inefficiency, at best, and more

likely a design flaw.)

The Path Analysis, strategy studied by Howden (16] is

an attempt to partition test cases into domains, each of

which forces the execution of some particular logical path

through the program.

Dynamic Evaluation Tools

In principle, anything that can be learned about a

program can be inferred from .the code and the environment in

which it is to be run. However, it is usually more

economical to stop looking at the program at some point and

I ~start looking at its results. We can imagine programs whose

4 -input domains are small finite sets. Such programs can be

completely validated by exaustive testing. However, in

practice this class of programs is so small that exaustive

testing is usually not a useful option.

Random or Partially Random Test Data. Tests with

I - '4

r 4J. ?1. ... 7 r -- - - - - - - -- - - ----

randomly generated test data are appealing because of their

ease of implementation. one would like, for instance, to be

able to specify a probability distribution on the inputs of

a program and automatically generate a test data set of the

desired size. If the distribution of inputs in the software

system's actual operation environment Is known, one could

then actually estimate the statistical reliability of the

software. Here "reliability* means the probability that the

software will function in its operating environment for a

given period of time without failure [11,131. However, in

practice the distribution of inputs is often not known, so

random testing does not then produce a reliability estimate.

The main problem with random testing is that just doing more

of it may not necessarily increase confidence in the program

by much. A hundred random test cases may test a few

sections of the program a hundred times, rather than testing 1
a hundred sections of the program. The following small

experiment illustrates this point. [

The experiment was performed to measure the effects of

program choice, test data selection method, and data set [
size on the adequacy of test coverage. The coverage measure

used was the mutation score from the first Fortran mutation

system. The mutation score will be discussed fully in

Chapter 11, but for now It is sufficient to know that the

scores range from 0.0 to 100.0, with the higher score

indicating more complete test coverage. Two programs called

IF 5

7

JBST03 and JBSTOS, first reported In (7), were used in the

experiment. They are both sorting programs so that the same

test data may be used, but they are based on different

algorithms. The test data selection methods are random

(from a table of random digits), and hand selection. All of

the hand-selected data was chosen before any testing was

performed, on the basis of a general knowledge of sorting.

The small test sets were composed of three vectors, of

lengths 1, 5, and 10. The large test sets contained six

arrays, of lengths 1, 2, 5, 6, S and 10. Two replicates of

each combination were generated, and the mutation scores

were measured. The results appear In Table 1.

Table 1. Effects of Test Size, Selection Method,
and Program on Test Adequacy

PROGRAM
4 Mutation Scores Test Set

JBST03 JBSTO5

95.6 q2.5 small
96.3 92.2

Hand----
Selection 96.7 95.2 large

96.7 95.2

96.3 94.q smallq6.3 93.8
~~~~~Random . . . . . . . .-. . . . . . . . .

Selection 96.7 94.7 large
Ranom 6.3 93.8

The effects are smal1 since all of the test cases

score in the q0-100 range, but there are strong

V



8 [

statistically identifiable effects. Table 2 is an analysis

of variance table, with effects a-program, bOdata generation

method, and c=test case size. (See Appendix E for a short

discussion of analysis of variance.)

Table 2. ANOVA Table for
Si ze-Selection-Program Experiment

Effect Estimate SS df MS F
a -2.23 19.80 1 19.80 176

b -0.50 1.01 1 1.01 8.98 V
ab -0.32 0.41 1 0.41 3.64
c +1.10 4.84 1 4.84 43.02 *
ac +0.55 1.20 1 1.20 10.67 1
bc +0.71 2.02 1 2.02 17.q6 *
abc +0.53 1.11 1 1.11 9.87
SSE 0.90 8 0.1125
SST 31.2q 15

The effects marked with an asterisk are significant at

the 0.005 level. Thus we see that the program being tested

is a major source of variation. Despite the fact that the

programs perform the same function, one is more easliy p
tested ttan the other. The size of the test set is also
important, with larger test cases providing better coverage

on a given program. Neither of these conclusions is

surprising. Since the b effect is not highly significant,

hand selection and random selection did not produce very

different results in this range of sampling. However, the

significance of the bc interaction leads us to believe that H
as the size of the test data set Increases, hand-selected

test data improves its performance faster than does randomly

IL



selected test data. Thus random test data may be less

desirable than test data that has been selected according to

some plan that takes into account properties of programs.

Symbolic execution. One measure of test data

effectiveness is the number of different control paths that

the test data will cause to be executed. The ATTEST system

described in (8,91 analyzes the structure of a program and

develops symbolic requirements for the traversal of given

paths in the program. As the name "symbolic execution"

suggests, the system steps through the program accumulating

symbolic expressions rather than the usual numerical values.

A branch condition results in a conditional expression

involving algebraic formulas. At the end of a path, then, a

compound logical expression involving algebraic expressions

in the input variables is obtained. These expressions may

then be solved automatically for input values that will

drive execution down the desired path. Symbolic execution

systems for subsets of LISP (4) 'and PUi (18] have been

reported.

Program Instrumentation. As was mentioned in the

f preceeding paragraph, coverage of program paths is a measure

of test effectiveness. This measure can be used as a

driving criterion for test data selection, or it can be

evaluated for test data generated by arbitrary processes.

The evaluation of the coverage measure can be implemented by

Instrumenting the program; that Is, Inserting instructions



10

that do not affect the functional behavior, but which use

auxilliary variables to keep track of program behavior.

Instrumentation can be used for paths of arbitrary

complexity, but is most often limited to simple Decision to

Decision Paths (DDP's) (27,151 and *hidden paths' (111 1
within predicates. While many more sophisticated techniques

j are being studied, the DDP method is widely available at the

commercial level (2,301. However, examples of simple errors

that could escape detection by the DOP procedure have been
reported in (141. I

Mutation Artalysts. Mutation Analysis produces a

measure of test data effectiveness that includes simple DDP I
coverage but is much more comprehensive. Test data that

receives a high mutation analysis score must not only force

the execution of all program statements, but must also

demonstrate to a high degree of confidence the correctness

of the operations along the paths. However mutation

analysis systems do not automatically generate test data. 1
But the listing *f live mutants is generally very helpful to

the human tester in devising test cases. A full discussion 1
is deferred until later sections.

* Other Approaches to Software Validation

Formal Verification. Formal verification hMas been

proposed in (201 as the ultimate program validation

technique. in this technique the tester is required to

produce a mathematical proof that the program's behavior is

41 [



11

consistent with its functional requirements. Manual theorem

proving for programs is usally such a large process that the

technique depends on the availability of automatic theorem

provers, or at least semiautomatic ones that pause

occasionally and ask for advice. Another requirement is

that the statements in the programming language have their

semantics expressible in simple axioms. The key

reservations that many researchers have about formal

verification are

(1) Can formal verification be made practical for

large software systems? This depends on

developing very efficient (in both space and time)

theorem provers. W.D. Maurer recently reported

in (211 that verification of a two page Cobol

program was obtained at the cost of S10,000. Mr.

Maurer was speaking in favor of verification.

(2) Can formal verification be made sufficiently

reliable? At the present "proofs' of programs are

as subject to error just as are the programs

I themselves (10,14). Reliability may be improved

by improving the reliability of automatic tools.

(3) Can production software be formally specified

" .. as completely as is required for formal

li



12

verification. Testing does not usually require a

complete prior specification.

Error Seeding. Error seeding (131 treats the program

as a statistical object. h known ntuber of errors are

deliberately introduced into the program, and testing

proceeds until a predetermined number of errors have been

discovered. If all errors are random and independent, one

could use the ratio of seeded to nonseeded errors among

those discovered to estimate the total number of errors

remaining. This is a direct analogy to common wildlife

population estimation techniques. The problem is that

experience shows that errors are not random objects (1), and

their clustering and dependent behavior may spoil this

analysis.

KJ



13

CHAPTER 11

CONCEPTS OF MUTATION ANALYSIS

Conditional Correctness

The chief concept underlying mutation analysis is that of

conditional correctness.

Given:

a program P,

a class- of programs m; Pam,

evidence E about the program P.

Conclude:

If a correct program PI Is In M4 then either P

Is correct or E demonstrates the incorrectness of

:P.

This paradigm is satisfied, for example, i,% the case of M

$ t being the set of programs for evaluating polynomials of

degree < 5. Then E Is the evaluation of P on 5 distinct

points. Given that the desired program is in fact in M4, E

is sufficient to decide whether or not P is correct. In

this example, E is sufficient to distinguish any two

elements of 74. In the more general case, this need not

: ~-gnaws"



14

hold. All that is necessary is that E distinguish P from

every element of M that is not equivalent to P. We say that

two programs are equivalent if they have the same

input-output behavior. We say that an element of Ml or M2

is equivalent (or nonequivalent) if it is equivalent (or,

respectively, not equivalent) to P. This result has been

extended to much wider classes of programs, but those

extensions are still based on polynomial behavior [291.

Now consider a slightly more complicated situation.

Given:

a program P,

two classes of programs M1 and M2; with PCM 1SM2,

evidence E about the program P.

Conclude:

1If

(a) there is a correct program PI in 142 and

(b) whenever E distinguishes P from all of

the nonequivalent programs in Ml,that E also

distinguishes P from all of the nonequivalent

programs in M2;

then either P is correct or E demonstrates the

incorrectness of P.

It is noted that the second situation is

,,9



15

mathematically isomorphic to the first (Ml is redundant.)

However, we will be interested in the experimental situation

in which proper$y (b) does not actually hold completely, but

is rather a statistical description.

Mutagenic Operators

Mutation analysis is an implementation of conditional

correctness where P is a program written in some programming

language and M is a set of mutants of P. A mutant of P is

a program derived from P by making a single, simple source

language change in the program. Mutations are produced by

mutagenic operators such as:

(in Cobol) Reverse any two adjacent elementary

items in a record.

(in Fortran) Reverse the dimensional limits in a

two-dimensional array.

(in any language) Substitute for a reference to a

variable a reference to any other variable

., appearing in the program.
-I

The choice of mutagenic operators is influenced by three

concerns:

(1) to include most common programming errors

[11,32).

• (2) to obtain program coverage by including

i " "



16

special operators that indicate whether or not

statements have been executed, and whether or not

those executions had any effect on the final

result.

(3) to permit straightforward and efficient

Implementation in an interpretive or compiled

system.

Evidence E results from executing P and some of its mutants

on a set of test data. The strength of the evidence Is to

some degree under the control of the designer of the

mutation system. If the set of mutagenic operators

implemented in a system allows test data to pass utation

analysis (distinguish P from all of Ml), -and important

errors are not detected, then the set of operators can be

augmented, adding programs to M1 and strerngthing the

evidence, by forcing the user to provide stronger test data.

Similarly, if operators are found to be of little use in[

testing (adding little strength to the test evidence), then

those operators may be deleted. operator selection be I
I discussed further under the proposed experiments.

TeCompetent Porme sulto n

TheCopigEfc

For any realistic choice of M2, either assumption (a)

or (b), or both, will not be fully satisfied.

For example, let M2 be the set of programs which a



17

programmer might produce in the course of an effort to

produce a program P which satisfies functional requirements

f. Then, just assuming that the programmer could possibly

write a correct program, assumption (a) will be satisfied.

But assumption (b) is probably not. For any program P and

any finite test set E it Is possible to find some other

program PI such that P and PI agree on E but nowhere else.

if both P and PI are possible results of the programming

practice, then (b) will fail.

At the other extreme, let M2 - M1. Then assumption

(b) is trivially satisfied, but (a) is not, since we know by

experience (Appendix D) that even the best programmers

produce programs that contain errors more pervasive than a

single, simple change. Another way to view this is that it

often takes more than a single change to correct a "buggy"

program. (See for example a discussion of a program by Naur

in (141 .)

In mutation analysis, we try to balance the two

assumptions and choose an M2 so that neither is dramatically

false. Even so, the definition of M2 is rather vague.

N Generally we choose M2 to be the set of programs that are

"close* to P In a syntactic sense. M42 would contain

* q multiple mutations, as well as perhaps simple missing path

errors, etc. Assumption (a) Is called the competent

4. programmer assumption (11,11:

A competent programmer, after completing the



iterative process and deeming that his job of
designing, coding, and testing is complete, has
written a program that is either correct or is
almost correct in that it differs from a correct

program in 'simple* ways.

Assumption (b) is called the coupling hypothesis [Il:

Test data that is sensitive enough to detect all
simple errors is sensitive enough to detect most

likely complex errors as well.

If the competent programmer assumption and the

coupling hypothesis were completely valid, then mutation

analysis would be a perfect testing technique. Since

elimination of all simple errors would eliminate all

possible ereors. This work addresses the coupling

hypothesis, and attempts to place statistical bounds on its

validity.

The following is one possible definition of a general

*coupling effect*.

Let P be a program, MIl a set of programs, and M2
* "."

another set of programs. We say that M2 is'441coup.ed to Ml (for P) if whenever a set of test

data T distinguishes P from all of the

tononequivalent members of MI, then T also

distinguishes P from all of the nonequivalent

members of M2.

snow



19

The existance of a coupling effect of this type has been

proved in [6] for decision table programs where r41 ( single

mutations of P) and ?42 - (multiple mutations of P). In the

more usual setting of Fortran and Cobol programs with M1 -

(single mutations) and M2 - [all likely errors), then the

strong form of the coupling effect does not exist, since

multiple mutations can escape detection by test data that

are sufficient to detect first order mutations. This

problem will be addressed specifically in Chapter III.

These uncoupled errors, or likely programming errors that

are not detected by test data generated for first order

mutation analysis, will be collected from the experiments,

and studied to see if they suggest new mutagenic operators

to be added to our current set in order to strengthen

mutation analysis.

We can however express the coupling effect

empirically:

':,I
Let P be a program, ?1 a set of programs, and M2

I I another set of programs. We say that M2 is

coupled to M1 (for P) with coupling coefficient

(1-w) if w is the largest number such that:

for any T distinguishing P from all nonequivalent

%i I, elements of M1, the number of elements of M2 that

oIw-



20

are nonequivalent and not distinguished by T is

not greater than wltM21.

Examining all possible test cases is not in general possible

(else there would be no need for any other testing

methodologies), so this definition is operationally

deficient. We can however define another coefficient z to

be the fraction of the nonequivalent members of M2 not

eliminated by some particular test case. z is then a random

variable over the space of program/Ml-sufficient test-case

pairs, whose upper bound is w. An experiment on the

coupling effect is a measurement of the strength of that

effect by measuring z, and hence estimating w. Actually, z

itself would only be estimated by sampling. A confidence

interval (see Appendix E) could be determined for z. The

conclusion of such an experiment could be of the form:

For programs selected from population Q and test

J :; data generated by process R (to a strength

sufficient for first order mutation analysis) the

values of z were estimated by sampling from the V
sets .12 generated by process Sand were found to

range from x to y.

I

I; Thus if Q is similar to a population of programs about

which we want to make quantitative testing statements, and R

* ;is the testing procedure that we want to quantify, and S

- 4.

'p. "



21

generates a reasonable distribution of cantidate alternative

programs# we can use the estimated values of z to bound the

likelihood that errors remain in a program.

The validity of the mutation analysis technique thus

rests on the competent programmer assumption and the

coupling effect. The major effort in this research is

toward finding the strength of the coupling effect, and thus

toward finding a limit on the reliability af mutation

analysis.

Equivalence of mutants

N~ot all first order mutants can be eliminated, no

matter what test data is supplied, since some mutant

programs will be functionally identical to the original

program. Some of these equivalent mutants can be detected

automatically, with methods borrowed from code optimization

theory (3,11. For example, changing

Ba 0 B :A

is an equivalent mutation that can be detected at compile

time and eliminated (i.e. not generated). Since

equivalence is formally undecidable, we can never hope to

detect all of them this way. mutation systems wil'., continue

* to rely on the human user to judge the equivalence of some

mutants. The accuracy of the typical user in judging

equivalence needs measurement# as does the cost of

I', improperly judging a mutant equivalent when in fact it



22

represents a potential error.

Most equivalent mutants encountered in testing are

very sImple ones, like the example above. Another major

source of simple equivalent mutants is the inclusion in a

program of useless variable initializations. If a program

includes "A:-0", and each possible execution path has

another assignment to A before A is used, then the 00" in

"A:=0" may be changed to anything else. Or the A may be

changed to any other variable that does not need a nonzero

value at that point. An example of a useless initialization

in a Cobol program used in this study is

MOVE SPNCES TO PRINT-LINE.

WRITE PRINT-LINE FROM HEADER-LINE AFTER PAGE.

Another source of equivalence is assignments that

"almost" don't matter. For example, if in a Cobol program H
FLAG is used as a boolean with 'TRUE' for true and 'FALSE'

"$ for false, and the only test in the program is IF FLAG

'TRUE'... then an assignment FLAG = 'FALSE' can be changed V
to FLAG = 'HELLO', or anything else other than 'TRUE'. A

statement such as MOVE ZERO TO NUM-1, where NUM-I is defined

to have no fractional part (e.g. PIC q9.), can be changed

to MOVE 0.12 TO NUM-1, due to the Cobol rules for numeric

truncation in a MOVE. The detection of equivalence in other

. !cases may not be so easy. Changing IF A - 11 to IF A IS NOT

< 11 may not be judged equivalent until analysis ot the

program shows that A can never be greater than eleven at

,' V
-! j



23

that point. obviously, examples of arbitrary complexity may

be constructed.

j,



24

CHAPTER III 1

THE COBOL MUTATION SYSTEM

Design and History of mutation systems

Automated systems to aid mutation analysis have been

developed [1,5,11,12,1q). Such systems are composed of theI following basic functions.

(1) A parser to reduce the source code to an

Internal form suitable for Interpretive execution '

and mutation.

(2) A mutation jenerator that produces a list of

mutation descriptions applicable to the program#

based on its internal form..

(3) An interpreter that executes the program or a

mutant program on a test case and records the

results of execution.

(4) A test data handler and user interface to

S provide a convenient software test harness. This

allows the user to submit -test cases, examine the

j results, and either reject the test case or accept



25

it for further analysis.

(5) A mutator that modifies the internal form in

such a way as to correspond to a source language

error, and later restores the program to its

internal form.

(6) A report generator that summarizes information

to the users terminal and to a permanent file in

which is stored the status of the mutation

analysis, the mutants remaining, and the test

cases.

IThe first automated mutation system was FMS.1 (for

Fortran Mutation System -- version 1) developed at Yale

$ _ University (11). FMS.1 was developed on a PDP 10 and was

later transported to a PRIME 400 at Georgia Tech, a DEC 20

at Yale University, and a VAX 11 at the University of

California, Berkeley. FMS.1 treats only a subset of

Fortran: a single subroutine with integer arithmetic and

without I/O. Success with this pilot system was sufficient
to motivate the construction of more elaborate systems.

Go FgSi 2 was also developed at Yale and transported to

Georgia Tech. It accepts multiple subprograms in full ANSI

Fortran (minus I/O) [(q1l]. FMS.1 is less of a

user-oriented system than FMS,1, and was designed primarily

._ - -I



26

to allow the flexible design of mutation experiments.

CMS.1, a mutation system for Cobol, was designed at K

Georgia Tech by the author and implemented on the Georgia

Tech PRIME 400. The design owes much to the earlier FMS.1,

as well as to discussions with its designers. For a full i
discussion of this system, see appendices A,B, and C.
A Case Study

During the development of CMS.l the author had

difficulty debugging a subroutine called NXTLIV. Since

CMS.1 is written in Fortran, it was decided to test the

subroutine under FMS.1. (FMS.2 was not then available at

Georgia Tech.) It was necessary to modify the subroutine

somewhat in order to conform to the FMS.l Fortran subset,

but it was felt that the error(s) probably did. not lie in

the code that required modification. A condensed script of

the testing session appears as Appendix D. One error was

found quickly. The ease of finding the error is probably

due less to mutation itself than to the convenient F
subroutine test harness provided by FMS.1. A second error

was found later, however, as a direct result of trying to

note is that the mutant being considered was not the

A correction of the error, but another mutant yet to be V
considered was. This is an example of the coupling effect.

.il Detection of one potential error automatically detected

another.,V



27

Programs Used in This Study

most of the experiments reported here use data

generated from six Cobol programs obtained from several

sources. Each of the programs was modified slightly to fit

in the CrS.1 Cobol subset. One typical modification was the

replacement of a serial disjunction of the form

IF A - 'At OR 'C' OR too

by the equivalent form

IF A - 'A' OR A = 'C' OR A -

Another is the replacement of a condition name by its

defining condition. In some programs record sizes were

reduced without affecting program logic. Listings of the

programs as tested may be found in Appendix F.

Program 1 is from the Army SIDPERS personnel system,

., and contains 146 lines of code. In its original form there

were otptional sections for different input forms (disk and

tape) and different output dispositions (disk and printer).

These options were deleted to conform to the CMS.1

sequential input - sequential output restriction. The

deleted code is essentially a copy of retained code with

different options on the READ and WRITE statements. No

errors were found in this program during the experiments.

The progam has two input files, both containing a key andV information field. The files are presued sorted on the key

Sfields, and represent old and new master files. The program

produces a log of the differences between its two input



28 I

files. Program 1 is used to illustrate the use of CKS.1 in

Appendix C.

Program 2 contains 163 lines of code and was written

by a student at Georgia Tech as an exercise. The program

accepts account transactions and performs one of several

simple computations based on a class code in the input

record. Data validation is performed, and the output

consists of one record for each input transaction, plus

summary statistics by class.

Program 3 is adapted from Learning to Program in

Structured Cobol [331. Input transactions are in the form

of pairs of records. For each pair the first record is a

name-address-phone-account-number record, and the second

contains credit information. From that credit information

discretionary income is computed by a standard formula. The

purpose of the program a readable listing of the input file

with name and address in one column and decoded credit

information in another. One small error was found; there

was code to handle the situation of an end-of-file atter the

first card of a pair, but this code did not bring execution

to a graceful end. Instead, the program terminated 11
abnormally several statements later when another READ was

attempted. There were also several useless initializations. [J
Swch useless statements are a nuisance in mutation analysis

since they can be changed to any other useless statement

without affecting the input-output behavior of the program.

ei



29

Program 4 is adapted from ANS Cobol: A Pragmatic

Approach [26] where it is called SR.FREP. The input records

are codings of student academic data, including name,

address, major, status, and a number of 'course items

consisting of the department, credit, and grade for each

course taken. The program computes the students' grade

point averages and produces a listing with name, address,

and other information in one column, and three columns of

course reports. The original program was written to accept

very long input records (>1000 characters). Since CMS.I

allows a maximum of 150 characters per record, some

abbreviation was necessary. The identifying fields were

shortened, and the maximum number of course reports reduced

to 11. One error was found; code to handle invalid input

records could sometimes refer to undefined data fields.

Program 5 was also written by a student at Georgia

ITech. Input transactions contain identifying codes for a

store, a department, and a salesman. The salesman's name,

year-to-date sales, current sales, comission rate, and

months employed are also included. In the computation,

commision bonuses are paid, depending on the department and

the average sales volume. Some data validation is

performed, and error report records are interspersed with

valid transaction report records. One functional error was

discovered during testing. If a page-full condition is

raised by the printing of an error report, then no heading

p7



30L

would be generated for the following page. Several data

flow anomolies, such as useless initializations, were

detected.

Program 6 is also taken from Learning to Program in

structured Cobol [331, and was written as an extension to

Program 3. In addition to computing discretionary income, a

credit limit is computed based on discretionary income,

marital status, home ownership, and job tenure. Rather than

just creating a listing from its input, the program uses the

input as transactions against a master file. The input and

master files are presumed to be sorted by account number,

and a new master is produced. A separate log of

transactions and errors Is also generated. The transaction

types are add, delete, and change master records. This

program was apparently not tested before publication, since

it did not function properly on any input. Faulty program

logic caused the last transaction card-pair to be ignored. -

* An empty transaction file caused abnormal termination. The

input is validated in one section of the program., but not in

another similar section. If the first card pair is an

invalid transaction, the error message is placed in the log

J file before the log file header. many extra initializations

and data field definitions are present, due largely to theV

* free use of the COPY verb. The program, after correction,

contains 619 lines.

4.1 Test Data Generation



31

Test data for use in the experiments was generated in

the way in which we would expect such data to be generated

in production use of a mutation system. A tester (in this

case the author) first manually generated tests to cover the

major points of the specification. For example, if a

program is supposed to produce one type of record for a zero

input field and another type if the field is nonzero# the

test data would include both. Actually this initial test

data does not even have to be very good, because of the

feedback supplied by the mutation system. The tester enbles

a subset of the mutants, and starts a mutation run. The

mutants alive (i.e. not eliminated

not differentiated fron the original program) at the

end of the run suggest new test data that the tester must

* "generate. This cycle continues until all nonequivalent

mutants have been eliminated. Then a larger subset of

mutants is enabled. Testing continues as before until all

nonequivalent mutants are eliminated. The subsets used in

this study are

a 1) The TRAP mutants. Elimination of these requires

that all statements in the program be executed.

* 2) h random 10% of all substitution mutants, and all of

f ,the other types. This seems t* yield strong test data

*I €with reduced computational effort [1].

~ ~ 3 ) All mutants that can be generated by the system.

(See Appendix A for a list of the mutagenic operators

Ii,,

: . , 4



32 I

supported by CMS.1.)

Prograw Statistics

The results of mutation analysis on the six programs

is summarize in Table 3, which shows for each of the six

programs the number of program lines, the number of mutants

when the substitution mutants are generated with probability

0.1, the number of those mutants equivalent to the original

program, the total number of mutants that can be generated,
and the number of those that are equivalent.

Table 3. Mutation Statistics on the Six Programs

-------------------------------------------------------------------
I number Inumber Inumber I number I number 1

IProgram I lines Imutants Iequiv. Imutants I equiv. I
I at 10%l at10%I at IGO% Iat 10%1

I 1 1 146 1 389 1 17 1 1098 1 21 1----I----I----------I----
I 2 1 153 1 603 1 36 1 2814 1 47 1
I 3 1 238 1 1125 1 61 1 6340 1 106 1

4 1 321 1 .1609 1 58 1 7334 1 q5 I
I 5 1 455 1 1527 1 92 1 7957 1 228 1
I 6 1 619 1 4011 1 128 1 28275 1 428 1IL - --------------------------------------------- -- [( *10% of substitution mutants, 100% of other types.

Empirical Complexity of Mutation Analysis
With the operators now in use in the various mutation I

systems, it has been seen that the number of mutants of a

given program is approximately proportional to the square of

the length of the program (1]. For Cobol programs perhaps a

better estimator of the number of mutants is the product of

4,4



33

the data division length and the procedure division length.

indeed we can almost predict such an empirical law from

first principles. Some of the mutant types are inherently

bounded by linear growth in the program size. Examples

would be arithmetic operator substitutions, in which there

are a fixed number of substitutions to be made for each

occurrence of an operator in the program. The number of

such source operations is no more than the length in

characters of the source program. The dominant mutant

types, for large programs, are the operand substitution

types (1). The number of those is bounded by the number of

data referances in the program times the number of distinct

data items to be referenced. Both of those are bounded by

the length of the program (or for Cobol, by the length of

the procedure division and the data division, respectively.)

Figure 1 plots the logarithm of the program size in lines

against the logarithm of the number of mutants from Table 3.

Since the points seem to lie about a straight line with

slope 1/2, we see that the number of mutants is quadratic in

mutants for the programs. We see that the number of

equivalent mutants is also quadratic In program size. This

could be troublesome for larger programs unless most

equivalent mutants car. be detected automatically.



34L

-t t -t
--- -1f

'7-T

<71

,'t~7. 1 a.

j..

P-4 Z

* ~ ~ ~ ~ 1 y -t__7 ~ N~

-1 11z

I II
eh 2r- LO 0 M N (cr, in N 0 0 M .

C41



35

CHAPTER IV

EXPERIMENTS ON THlE COUPLING HYPOTHESIS

Empirical evidence has been found (1] for the coupling

effect for Fortran programs, but this evidence is weak in

that only a very few programs have been studied in a limited

way. This research will extend these results by more

extensive studies in an attempt, to place bounds on the

statistical validity of the coupling effect.

A series of experiments has been devised to test the

h.%ypothesis that testing a program to a degree sufficient to

eliminate first order mutations is necessarily also

sufficient to eliminate most likely complex mutations as

well. The experiments all have the same basic format:

Step 1: for a given program, generate test data using a

mutation analysis system, sufficient for first order

mutation.

Step 2: Randomly generate a large number of more complex

mutants, execute the resulting programs on the test data

from step 1, and list mutants not eliminated.

Step 3: Manually examine the list to remove equivalent

In step 2 in all cases., we use uniform sampling with

replacement from a given space of complex mutants. Thus the



36

parameters of each experiment are the program being tested,

the tester, the type of complex mutants considered, and the L
sample size. These experiments were performed using a j
single tester (the author), and a single set of test data

for each program. The repetition of these experiments by

other investigators would enable us to estimate the

variation in the coupling effect due to test data

generation.$ Random Pairs of First order Mutants

One place to start looking at the coupling effect is

with "complex errors" defined as par of simple mutants.

*It is not reasonable to look at all possible pairs of

mutants because of their number. A small sample program

might have on the order of ten thousand mutants, giving a

hundred million mutant pairs. (Actually the number would be

somewhat less, since not all pairs are possible, but the

order of magnitude is correct.) it is quite feasible to run

that many mutants, but the number of mutants that must then

14 be examined by hand for equivalence is unmanagable. We can

obtain sufficient information by selectin~g a reasonable

number (in this case 50,000) mutant pairs from one program.,

and then selecting more from a different program, and so

forth. Sampling programs as well as mutants will make any

* conclusions more general. When the coupling effect Is total

'I (wol.0), test data developed to eliminate all first order

nonequivalent mutants eliminates all higher-order

:1 i _4



37

nonequivalent mutants as well. Since the coupling effect is

not expected to be total in practice, what we need is a

confidence interval on the fraction of second order mutants

that are not equivalent and are not eliminated by data

chosen to eliminate first order mutants. If we find any

such "bad* second order mutants, we can obtain a two-sided

confidence interval on that fraction (see Appendix E). If

we find none, then we can still obtain a one-sided (upper

bound) confidence Interval. This will give us an estimate

of the probability that an error of the type (second order

mutation) would escape detectioti in mutation analysis. For

this experiment pairs of mutants were selected uniformly

from the list of first order mutants, by a pseudo-random

number gererator. There were some technical -difficulties.

A mutant is a mutant of a particular program., and tray not

have meaning for another. in particular, if S and T are

mutations to a program P, producing programs S(P and T(P),

* then T(S(P)) may not necessarily be a legitimate mutant of

S(P). For example, if S Is "Delete statement 27" and T is

"In statement 27 replace I by V, then T cannot follow S.

So in the selection procedure su ch things had to be avoided.

The method was to select a pair of mutations, check their

validity as a pair, and make the mutation If valid. Invalid

pairs were discarded. The process continued until the

required number of valid pairs had been selected. The

V results are summarized in Table 4.



38

Table 4. 50,000 Random Pairs of Mutants
for Each Program

Program Pairs Survive Not Equiv. 95% Confidence
I1st Order Interval on
Test Data (z * 100,000)**I
-------------- ------- I----------------- I

1 26 0 1 0.0-- 7.4 I
2 12 0 0.0-- 7.4
3 22 5 3.2 -- 23.3
4 10 2 0.5 -14.4 I
5 45 0 0.0 -- 7.4 I
6 13 0 0.0 -- 7.4
----------------------------------------------------------

•* z is the probability that a randomly selected pair of
simple mutants would generate an uncoupled complex error
for this test data.

The numbers are very favorable for mutation analysis.

Test data generated to be sufficient for first order mutants

proved to be sufficient for at least q9.q76% of all second

order mutants in all cases considered, and q9.92% in most

cases. These results can be stated in several ways. In the

terminology of Chapter I1, the coefficient of coupling of

the set (first order mutants) to the set [second order "

mutants) for a given program is very close to unity.

Significantly, program size does not seem to be an important

factor in the coefficient. In terms of implications for the

design of mutation analysis systems, the addition of second

order mutations gives almost no power not already present in

first order mutations, and certainly not enough to justify

4' their cost.

- -



3q

However, uncoupled mutants were found in the

experiment, and they may lead to insights into how mutation

analysis may be strengthened in other dimensions, such as

the choice of first order mutagenic operators. All of the

uncoupled mutants found were pairs of alterations to a

predicate; either changing a comparison operator and one of

its operands (Type A), or changing both operands of a

comparison operator (Type B). There were four type A

mutants, one of which is

IF(MARITAL-STATUS-WS = IS')

IF(NAME-Ll < 'S')

and three type B mutants, like

IF(SOC-SEC-IN NOT - lqqqqqq999)

IF(ADDR-IN-2 NOT = SOC-SEC-Fl)

If we treat the uncoupled mutation as a potential error (or

correction) to the program, then they represent a form of

coincidental correctness: taking the right path for the

wrong reason.

Correlated Pairs of First Order Mutants

It has been suggested Ell that completely random and

independent sampling is not really a fair test of the

coupling effect. Most single mutants are unstable and are

eliminated rather easily, and so random pairs will be even

more unstable. Perhaps we should look not at Independent

pairs, but rather at pairs of errors that have a chance of

producing subtle errors. Those would be pairs of mutations

J4



40

that "almost cancel". We can develop the capability of

automatically generating "correlated" mutant pairs. A

proposed criterion for such pairs is that they either refer

to the same variable or to the same statement. A weaker

restriction would be that they refer to statements that

reference the same variable. Note that all of the uncoupled

errors from the previous experiment fit this criterion. The

procedure for pair selection is to randomly select a pair of

substitution mutants, and check to see if they reference

statements which reference the same data item (either a

variable or a constant) . Pairs that alter the same

reference in the same statement are not considered, since

they are in effect first order mutations. The procedure is

repeated until 10,000 correlated pairs are generated and

tested for each program. The results are presented in Table

5, where for each program, 10,000 correlated mutant pairs

A were created.

'--7-77



41

Table 5. 10,000 Correlated Pairs of mutants
for Each Program

----------------------------------------------------------
Program I Pairs Survive Not Equiv. I q5% Contidence I

I1st Order Interval on
Test Data (z * 100,000)**

- -- - -- - - ----- --- --- --- -------- -------
1 0 0 0.0-- 35.q
2 3 1 0.3 -- 55.7
3 60 19 1 114.4 -- 2q6.6 I

1 4 1 3 3 6.1 -- 87.6
5 1 0 0.0-- 36.9
6 1 0 0.0-- 36.9

•* z is again the probability that a randomly selected
complex mutant of the current type would represent an
uncoupled error for the given test data.

Eighteen of the uncoupled mutants are of Type A, defined in

the previous section. Four are of Type B.- The other

uncoupled mutant is also a pair of mutations to a

conditional expression, but the two mutations do not affect

the same comparison. The complex mutation is

IF(ACCOUNT-MUM IS NUMERIC AND BILLED-AMOUNT IS NUMERIC

AND...

is changed to:

IF(ACCOUNT-NUM IS NOT NUMERIC AND BILLED-AMOUNT IS NUMERIC

OR...

1 .The experience of performing this experiment showed

that, while the number of correlated mutant pairs increase

as program size grows, the fraction ot all mutant pairs that

_.A J' are correlated diminishes. Therefore, the experiment was



42

extremely time-consuming (in terms of computer time) for

large programs. This effect would be expected to intensify

for higher order mutation, or larger programs. Thus because

of practical constraints, the correlation of mutants cannot

be studied further using the method of this experiment.

Higher Order Mutants

it is also possible to look at triples of mutants, or

even mutants of higher order. We do not need to carry this

{ too far. The more errors introduced into a program (or from

another point of view, the more changes necessary to make a

faulty program correct) the more we violate the competent

programmer assumption. But we do need some data on multiple

mutations, just to assure ourselves that nothing drastic

happens as the order of mutation increases.. For this

experiment 20,000 complex substitution mutants of each of

the orders 2, 3, 4, and 5 were generated for each of the six

4 programs. We restrict ourselves to substitutions to avoid

the technical difficulties discussed in the random pair

experiment. As was stated in the preceeding section, it is

n~ot feasible to look at high order correlated mutants. Theh

tuples were checked to make sure that all mutations were

applied to different data references. The following table [
shows the number of mutants that passed the first order test

* data for each program, and the number that were not

equivalent (uncoupled mutants).

--'K"



43

Table 6. 20,000 Mutants of Order 2,3,4, and 5
for Each Program

Program I
#1 12 13 14 15 161

I Number I I I I I I
I that I 1 I 2 1 5 0 1 q 5

I 2nd Orderl Pass Test I I I
Mutants ----- - - -  I .. . ...- e..e. I

Uncoupled I I
Errors 0 10 1 0 0 0

(Nonequiv.) I II ..... I ..... . ... I.....ee....

Number I i
that 0 1 -0 1 0 1 0 0 1 0

I 3rd Orderl Pass Test II I
Mutants --- .- e . I. . I .....

Uncoupled I
I Errors 10 1 0 1 0 1 0 1 0 1 0
I(Nonequiv.)l I.... .....---.. I ----------- I . .
INumber I I
I that 0 10 1 01 0 1 0 1 01

I 4th Orderl Pass Test I I I
I Mutants I ..... I s. . .. .I ---. ------

1. Uncoupled I I I
I Errors 101 01 0 1 0 1 0 1 0
I (Nonequiv.) I I
--- -- --I -- e . e a s s
I Number I II

I Ithat 0 0 0 0 0
I 5th Orderl Pass Test II
Mutants ----------- ..... !s.e... . eases I--..aaa..

Uncoupled
I tErrors 0 1 0 10 1 0 1 0
1 (Nonequiv.) I I I I

There are no surprises in this data. Higher order

wim utants are m.ore easily eliminated . The one unco upl ed error

; .to of Type A . The implication of this data is that, at

least for the class of potential errors that are

OWI



44

representable as combinations of simple, mutations, our

experiments on mutant pairs will serve to provide upper

bound information on the incidence of uncoupled errors,

since higher order mutations are extremely unlikely to be

uncoupled.

One other statistic was generated during this case

study. For each program and each order of mutation, the

average nu~mber of statements executed per mutant before the

termination of execution (by normal end or error) was

calculated.

Table 7. Average Statements Executed Before Failure
on Programs with Multiple Order Mutations

--------------------------------------------------------------
I Program I 2nd Order I 3rd Order I 4th Order I- 5th Order

I 1 I 30 I24 121 I19
I 2 I 47 27 1 is 5
I 3 so0 38 I 310 27 I

4 I 124 I 85 I 67 5 I
5 I 52 I 35 1 2 7 1 22 I
6 I 132 I 9 1 74 1 60

Many software reliability estimates are based on the [

assumption that the probability of failure In a given time

interval of a program is proportional to th~e number of 1
errors In the program 1131,. If that were true, then the

jexpected time to failure of the programr would be inversely

proportional to the number of errors present. For if T is

the time to failure (say in statements executed),* and cn is

the probability of failure during the execution of any given
statement, The the expected time to failure is given, by

j ii



45

0.07 .-

;7 ... ...

-47

Tit.

0

.02

0-

0.02

0.0 7 0 12 34,

Number of Error$

4Figure 2. Inverse of Time to Failure
~' vs. Number of Seeded Errors



46 L

- (i-I)

E (T) P, ? (1-en) (cn) (i)"*. i:1

which reduces to

1

E(T) =
cn

Table 7 then represents a simulation study of this

assumption. As the graph in Figure 2 shows, the assumption

is supported quite well. Not only is there apparently a

strong linear relationship between 1/Avg(T) and n for each

of the programs, but also for all but one of the programs

the line segments can be extrapolated backwards to show

intercepts near zero. That one program is the smallest and,

presumably, the worst simulation of a large software system.

This data cannot be interpreted as complete proof of the

assumption on the probability of program fialure, however,

"* since the assumption is based on typical "live" input data. Li
The test cases that generated the data were intentionally I

chosen to be nontypical, in that the test cases were

'i required to execute exception-handling code that would

rarely be executed in practice.

Coupling and Complexity
i ' it is possible that some attributes of programs

measurable by objective means would have some Influence on

th strength of up g. one such attribute to be studied

is the structural complexity of programs (measured for



47

example by the number of branches). one problem with

another testing strategy, DD path coverage, is that it may
/

take test data forcing the program down a particular complex

path in the program to force the discovery of an error. For

example consider the following small program to sort the

tuple (A,B,C).

LI: if A<B then goto L2;
T: X;A:=B;B:-C;

L2: if B<C then goto L3;
T:-A;A:-C;C:mT;

L3: if B<C then goto L4;
T:=BB: =C;C: -T;

L4: stop

The program is incorrect. The condition at L2 should be

A<C. The input tuples (1,2,3) and (3,2,1) for A,B.and C

both give correct results, and force the execution of all

DDP's. (1,2,3) takes the TRUE branches at Li, L2, and L3,

while (3,2,1) takes the FALSE branches. It is when trying

to develop a test case that will cause the execution of the

complex path having different results at the last two tests

(TRUE at L2 and FALSE at Li, or vice versa), that the error

must be discovered. So simply covering all simple path

segments may not be sufficient. It is possible that

mutation analysis has this same weakness, since mutations

are of a highly localized nature. Any weakness would be to

a lesser degree, however, since mutation analysis includes

jIf DD path coverage as a subcase. To test the relationship of

complexity to coupling, we hypothesize that the more

branches a program has, the harder it is to test adequately

- - __ ____ ___ ____ ___ ___ ____ ___ ____ ___ ____ _ ,___•

____________________________



48

by mutation analysis. If this is true, the more

structurally complex the program, the higher the proportion

of uncoupled potential errors we would expect. An

experiment to test this hypothesis would match programs for

length and number of mutants, but of differing branch-count,

and would measure the coupling coefficient defined in

Chapter II. If the confidence intervals on the estimates of

the coefficients overlap, then we detect no relationship.

If they do not, then we have a statistical relationship. If
the relationship is found to hold, it would be an argument

for simplicity in program structure for programs to be

tested by mutation analysis, Currently mutation analysis

does not suggest that simplicity is a virtue. For this

experiment, "live" data could not be used., instead, a

sequence of small programs was written, all using the same

da ta items and data references, but with an increasing

number of branches. The Experiment used 50,000 pairs of

mutants for each program. Table 3 shows the number of

branches, test case records, mutants, pairs passing the test
data, and uncoupled mutants (mutants that pass but are notF equivalent) for each program.

JL



49

Table 8. Comlexity and Coupling

Program Number I Number I Number I Number I Number I
of I of I of I that IUncoup-!

I Branches I Records 1 Mutants! Pass I led
SI --------- --------- I-------- I ----- I----

I C-1 1 0 1 1 4741 32q1 0 1
1 C-2 1 3 1 480 1 153 1 1 1
I C-3 3 7 442 84 1
I C-4 1 5 1 12 1 504 1 50 1 3 1
1 C-5 1 7 1 15 1 516 1 18 9 1

Eleven of the surviving nonequivalent mutants are of

Type A, and the other three are of Type B. The large

numbers of equivalent mutants in. the simple programs are due

to "almost uselessw statements that were included as places

to insert branches without greatly affecting the number of

mutants generated.

The effect of adding complexity is very slight, and

Kcan be totally accounted for by the type of uncoupled
2

mutants seen in earlier experiments. Hence complexity, at

least in terms of branching, is not a hinderence to mutation

analysis. of course these conclusions apply to a very

restricted definition of "complexity". When mutation

V analysis systems become availible for a structured language

like Pascal, it will be possible to measure testability and

coupling in terms of other structural factors. In

particular a comparison of an algorithm coded using GOTO

with a comparable algorithm using the more socially

acceptable constructs would be interesting.

If*r



40 V

40 __ __

35 -

& 0

o 7-

15 -

10 - - -

5-

0 1 17177
Number of Branches

* Figure 3. 95% Confidence Intervals on 3*100,000

vs. Number of Branches

ii4

seem. Wak



51

CHAPTER V

-EQUIVALENCE OF MUTANTS

Human evaiuation of Equivalence

It was stated in Chapter III that it would be possible

to detect some equivalent mutants automatically, but not all

of them. For that reason we need a mesaure of how

accurately humans judge equivalence. An experiment was

designed to obtain such a measure under circumstances

similar to those under which equivalence judgements would be

made in actual testing. Programs 3,4,5,and 5 were used.

For each program the sequence of test cases discussed in

Chapter III was used to eliminate mutants, but testing was

stopped when the number of mutants remaining was

approximately twice the number of equivalent mutants. This

process eliminated most of the obviously inequivalent

mutants. It has been our experience with mutation systems

that users rarely examine mutants closely with a view toward

detecting equivalences until the set of mutants has been so

reduced by testing. From the remaining mutants, tor each

i~ Iprogram a subset of fifty was selected randomly using a

pseudo-random number generator. Two subjects were used in

the experiment. Both have been involved in the development

I '



52

of mutation analysis systems, and are competent programmers.

Neither had previously been exposed significantly to the

programs used in the experiment. Each subject was given the

list of mutants and the source listing for each of the

programs, and was Instructed to mark each mutant

wequivalent" or "not equivalent". There was no time limit.

The reference answers were prepared by the author in

consultation with others.

There are two types of errors that can be made in

judging equivalence. The first type is the marking of a

non-equivalent mutant as equivalent, and the second is the

opposite: marking an equivalent mutant as non-equivalent.

The second type is not too serious in the process of

mutation analysis, since the mutant remains-in the system

and may be reconsidered later. The first type is the major

problem. When a type 1 error occurs, a non-equivalent

mutant which presumably could be valuable in the testing

process, and which may directly indicate the presence of an 1
error, Is removed prematurely from consideration.

Committing a type 1 error increases the likelihood that an

erroneous program will be accepted as correct by a [
practicioner of mutation anlysis. The result of the

experiment is shown in Table q. For each of the four

programs, the table shows the number of equivalent and

Il'non-equivalent mutants In the sample of fifty mutatns

present late In the testing procedure, and the number of

.............

L i~z-JEWz



53

correct identifications, type I errors, and type 2 errors

for the two subjects.

Table q. Human Evaluation of Equivalence

I I Subject 1 I Subject 2
lPrograml Eq.I Notl ----...------- I- ---------
I ICorrectITypelTypelCorrectlTypelType

I1 I21 11 2 1I- -- -- 1. . Ce,- - ... .... ~ --1--,----oa
1 3 1 20 1 30 1 44 10 16 1 42 12 16 1

4 121 2q 36 2 1 121 33 1 6 1 111
5 1 20 30 1 46 0 1 4 1 40 5 1 51

1 I 13 371 33 16 1 11 45 1 1 41
----------------------eee eee-ee----e e-- - - - - --

Subject 1 was more variable in accuracy than Subject

2, but overall their results were very similar. Subject 1

identified 79.5% of the mutants correctly. Subject 2 was

correct or 80% of the mutants. In measuring type 1 errors.

the best computation is probably the total type 1 errors as

4' a percentage of total non-equivalent mutants, since the

non-equivalent mutants represent the potential type I

errors. Subject 1 made type 1 errors on 14.3% of the

I non-equivalent mutants, and Subject 2 on 11.1%. Similarly,

Subject I made type 2 errors on 31.5% of the equivalent

mutants, and Subject 2 on 35.1% of them.

* ; yThe measure of type 1 errors may be high enough to

reduce confidence in mutation analysis, if it acurately

III predicted the frequency of such errors in practice. It

should be remembered, however, that the subjects were

required to choose one mark or the other for each mutant

-ANI&



54

with the evidence in hand (the source listing), while a

tester in practice may postpone the decision pending further

thought and testing. Further, the subjects worked in

isolation, and were thus denied both helpful consultation

and the motivation of accountability for potential errors.

These would be important factors in real-life testing

situations. On the other hand, the higher error rates for

type 2 erors indicate that the subjects were being

conservative in their judgements, marking mutants

non-equivalent when in doubt.

Pairs of Eguivalent Mutants

It might be instructive to look at pairs of mutants

that are equivalent as first order mutants. These might be

a source of weakness in the mutation approach. The reason i

is this. An equivalent mutant is a potential error about

which the tester is saying "I don't want to bother with

this; it isn't important.* As single mutants, that may be f
true, but a pair of equivalent mutants may represent a pair

of arbitrary choices made by the programmer, which may not

i3 !nteract properly. From another point of view, if

muatations are considered not as errors but as corrections

• , to a buggy program, it may be that the program needs two

* ;corrections, neither of which improves the program by

itself. 1

Aglow ~ Musa



55

Consider the program fragment

P: Awl

Bai
S

IF A.NE.O .AND. B.E0.1 ...

Mutant programs PI with A-i changed to Av2 and P2 with B-1

changed to B-A might each be equivalent to P, but Pi2 with

both changes might not. If P12 is actually the correct

program, then it might be possible for P to pass first order

mutation analysis, even though it is incorrect. An

experiment aimed at investigat-ing this phenomenon was

conducted. For each program, all possible pairs of mutants

marked equivalent in the testing process were created and

run on the test data. The numbers that were killed were

determined. These numbers represent a lower bound on the

number of pairs not equivalent to the original program,

since the test data is not perfect. For programs 5 and 5,

the pairs were randomly sampled due to their great number

and to the long run time of the program.

j IF

V,
I'



56

Table 10. Pairs of Equivalent Mutants

-------------------------------------- eeeeeeeeeeeeeeeeee-----

IProgram I Number I Number of I Number I Percent I
Equivalent I Pairs I Killed I Killed I

I Considered I by Data I

I 21 208 0 0.00 1
1 2 47 1081 4 0.37
I 3 106 5113 36 0.70 1
1 4 q5 4283 6 0.14 1

5 228 5000* 6 1 0.12**V
1 6 425 5000* 1 27 1 0.54***l

eeeeeeeeeeeeeeeeeeeeeeeee e --e----eeeeeeeeeeeeeeeeeee ----------* random sample
** q5% confidence interval - (0.04 , 0.26]
*** 95% confidence interval -10.37 , 0.781

The results show that less than 1% of the pairs of

equivalent mutants are determined to be nonequivalent (as

pairs) by this test data. These measurements are lower

bounds, since stronger test data might distinguish more

pairs from the original program. However, the uniformity of

the results would tend to raise our confidence that pairs of

first order equivalent mutants will not be a major problem [
for mutation analysis systems.

II

i



57

Cq1APTER VI

SUBSETS OF MUTANTS

Random Selection of Mutants

The quadratic growth in the num~ber of mutants of a

program is due to the mutant operators of the substitution

type. It has been suggested that those operators are

actually too strong, and that a fixed small number of

substitutions per reference may produce almost the same

error-detection power. The reasoning is that the tester

"explains" with a test case why the variable X was used, for

example, not why Y was not used (1). Hence random selection

of mutants, at least of the substitution types, may be a way

to bring the growth of the number of mutants down to the

linear range while sacrificing very little power. Table 10

summarizes the results of this study. The columns labeled

"survive" indicate the counts of th~e number of mutants out

of the full 100% that survive the specified testing

criterion and are not equivalent to the original program..



58 L

Table 11. Reduced Power Mutation Analysis

-------------------------------------------------------------
IProgram I *mutants # *mutants Isurvive I Survive I

I I at lot at 100% "TRAP" I10% dataI

1I 389 1098 16 1 0 I
I 2 1 503 1 2814 I 906 1 0
I 3 I 1125 5 340 I 129 I 2
I 4 I 1609 1 7334 1 97 I 16
I 5 I 1527 I 7957 I 407 1 14
1 6 1 4011 I 28275 1 78q9 1 66

---------------------------------------------------------------

It can be seen that simply generating test data to

cover all statements in the program (TRAP) is not very

strong, but generating data to eliminate 10% of the mutants

is almost as good as using 100% of the mutants. However,

the trend as program size increases is not quite what had

been expected. As program size increases, 10% mutant

selection generates an increasing number of mutations per

data reference, and should (intuitively) produce a stronger

test. But the strength of the test, measured by the

A percentage of all mutants eliminated, does not increase with

program size, and may actually be decreasing. We may again

* 4consider these findings in terms of implications for theH

design of .future mutation analysis systems. Experiments on

the coupling effect have already shown that extending

Mtation from first order to second adds 
very little testing 1

power. Now it is seen that weakening first order mutation

4 to a subset of itself may decrease the power of the system..

* This would indicate that first order mutation is not too



5q

strong, but is rather the appropriate level of testing for a

mutation analysis system.

Table 12. Test Strength Using 10% of Mutants

Program lines Percent Eliminated I
-- - -- -- -- - --- -- -

1 146 100%
2 1 163 100%
3 1 238 9q.q7%
4 1 321 1 qq.78%
5 445 I q9.82%

S6 619 I 9q.77%

The test strengths are all very good but studies of

this effect with much larger programs are needed to see if

our intuitions really are valid.

Efficiency of Mutagenic Operators

A second economy can be gained if it is found that

4 some of the mutant operators provide only error detection

capabilities already covered by other mutant operators. In

J particular, in Cobol, if we do not need the data structure

mutants, then we can perform mutations on a machine language

internal form (compiled), rather than a higher-level form

that must be interpreted.

For a mutatgenic operator (or mutant type) to be

useful, it must force the user in some way to produce

stronger test data than he would without it. If all of the

4; mutations produced by an operator are extremely unstable

(are eliminated by any test data that executes the affected

or
A _ _ _ _ _ _ _ _ _ _

.J -, - . .. .



code), or if all are equivalent, then the operator is not

providing useful Information and guidance to the tester.

Let Nt be the total number of mutants generated by a

particular operator, and let Nu be the number that are

eliminated on the first execution of the affected code by a

test data set, and let Ne be the numzber equivalent to the

original program. Then a treasure of the efficiency of the

mutagenic operator (for that program and- that sequence of

test data generation) is given by

(N t - (N u + bie) N Nt

Nt and Ne depend only on the program being considered and

the operators in use. Nu depends also on the test data

generation procedure. It might ber preferable to think of

the inefficiency

(Nu + NO) Nt

A reasonable procedure for collecting operator efficiencyh

data would be

(1) Select several programs representative of thev

application space envisioned for testing with a

I iiparticular mutation system..

(2) Generate test data just strong enough to

4'3 4



61

execute all statements. (i.e. try to produce

weak tests, which cover statements but do as

little more as possible.)

(3) Generate test data to eliminate all

nonequivalent mutants.

After such measurements have been made on several

programs, and preferably even for multiple independent test

data generations for each program, a set of efficiency

measurements for each mutagenic operator will be obtained.

If an operator consistently scores near zero, then the

deltion of that operator from the mutation system would be

justified. If an operator has a significant efficienrcy

score on any program for any test data generation, then that

operator is forcing the tester toward greater test data

strength and should be retained.

There are two limitations to this approach. The first

is that it does not consider interactions between operators.

It may be that two operators each have high efficiencies,

but actually have the same effect, i.e. they require the

same test data for coverage. In that case one or the other

may be necessary, but not both. The efficiency measures

f ~will not give us any indication of this. In fact they are

giving us just the interaction of the TRAP operator with all

S.ot the others, on the assumption that we will always want at

4.



62 I

least statement coverage. We could expand the experiment to

indicate mutagenic operator dependence on any subset of

operators S by replacing step 2 in the procedure with

(2) Generate test data ju.zt strong enough to

eliminate all of the nonequivalent mutants

generated by operators in S.

and by modifying the definition of N4u similarly. Ideally,

* we would measure the efficiencies of operators relative to

all possible subsets, in order to find the minimum subset

relative to which no other operators had significant

efficiency. Unfortunately, this is not feasible. An

approximate operator selection procedure would be to choose

the most efficient operator (relative to trap), and call it

01. Next choose the most efficient operator relative to

TRAP and 01, and call it 02, and so on. The procedure wouldL

* terminate when no operator had an efficiency above a

practical threshhold.

A second limitation is that the procedure works only4 for a given class of programs from which we are sampling.

Drastically changing language or even the style In which the

programs are written would probably affect the choice of

efficient mutagenic operators. However If we have a

particular population of programs on which we will expend

large testing effort, it is possible to "fine tune" the set



63

of operators for that population of programs, by using only

the operators that provide useful testing information.

The results for the single test data generation for

the six programs are displayed in Table 12.

Table 13. Mutagenic Operator Efficiencies

------------------ nnnnnnnnnnnnnnnnnnnn

Program
Operator -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -

1 2 3 4 5 6

I Decimal I * I 0.6 1 0.30 1 0.21 1 0.33 1 0.13 1
Occurs I * I * O.O0 * 1 *
Insert 1 0.00 1 0.00 1 0.01 1 0.00 1 0.00 1 0.00 1

I Fill.Siz 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1
I Item Rev 1 0.05 1 0.04 1 0.07 1 0.00 1 0.00 1 0.01 1
I Delete 1 0.00 1 0.34 1 0.00 1 0.01 1 0.04 1 0.03 1
1Go-Perf * I * * 10.00 * 10.001
I Perf-Go 1 0.00 1 0.00 1 0.00 1 0.08 1 0.00 1 0.00 1
I IF Rev 1 0.00 1 0.67 1 0.00 1 0.06 1 0.00 1 0.30 1
Stop 0.00 0.00 0.00 0.00 0.00 0.00

IThru 0.00 * * 0.06 * 0.00
I Arith * 0.75 * 1 0.04 1 0.05 1
I Compute * 10.50 10.25 * 10.00 0.00
I Parenth. I * I * 0.00 * 1 0.00 1 0.00
I Round 1 0.44 1 0.20 1 0.00 1 0.11 1 0.17 1
Move Rev 0.00 0.00 0.00 0.00 1 0.04 1 0.01 1

I Logic 1 0.07 1 0.51 1 0.00 1 0.13 1 0.24 1 0.05 1
I SFS 1 0.01 1 0.34 1 0.03 1 0.01 1 0.04 1 0.02 1
ICFC 10.00 10.251 0.001 0.011 0.101 0.041
I CFS 0.00 1 0.36 1 0.03 1 0.01 1 0.05 1 0.04 1
SFC * 0.18 1 0.00 1 0.03 1 0.0q 1 0.04 1
C Adjust 0.00 0.50 0.14 0.06 1 0.22 1 0.03 1

I Files 1 0.00 * * * * 0.00 1

No mutants of this type generated for this program.
II

There is a wide variation in efficiencies between

I programs. This is partly due to the inexact test data

* selection procedure, and partially due to the inherent

differences between programs* The programs use different

. .



64

language constructs to perform different tasks. A mutagenic

operator th-at focuses attention on one type of construct is

most useful In programs that rely heavily on that construct.

The first five operators are of special interest.

These data mutations force us Into Interpretive execution

using a run-time symbol table. If they can somehow be

avoided, then more efficient compiled execution is possible.

The first operator moves the implied decimal point in a7

numeric item. It is useful primarily in that it forces the

tester to provide nonzero values for that variable. The

same effect could be achieved by a special mutagenic

operator that requires a nonzero value at a data reference

in the precedure. FMS.2 provides such an operator called

ZPUSH. The second operator alters the OCCURS count in a

table description. more investigation of programs using

tables is necessary before this operator can safely be

4 deleted, using programs that rely more heavily on tableL

structures. Insert~Ing an extra filler in a record is of

little use, as is altering the size of a filler. Reversing

two adjacent elementary items within a record is sometimes a L
useful operation, but probably the same effect Is produced
by substituting one field for another in the procedure

division. A study of the efficiency of item reversal

relative to scalar substitution would be useful.

Of the procedural mutations, changing a GO TO to a

PERFORM or vice versa usually provides no testing power.



65

Perhaps most of the testing effect of trying various path

alternatives is already achieved by simple statement

coverage. Inserting a STOP statement is not helpful because

in most programs, files will be left open, an error. STOP

insertion thus plays essentially the same role as TRAP.

THRU clause alteration, reparenthisization of arithmetic

expressions, and the reversal of the direction of a binary

MOVE, and changing an I/O reference from one file to another

are rarely useful. Probably these mutations too drastic.

Errors this large are trust be detected by 2U, test data that

exercises all of the program. The errors we are looking for

after completing basic statement coverage are subtle ones.

The major errors have already been ruled out.

A useful but efficient subset of operators for a

compiler-based mutation system might therefore be "Delete"

(statement deletion), "IF rev" (IF-THEN-ELSE clause

reversal), and the substitution operators 'Arith" (for

arithmetic operator substitution) through 'C Adjust" (for

constant adjustment) in Table 12.

4 -- - -4



56r!

CHAPTER VII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The results of the experiments reported here basically

support mutation analysis as a testing discipline. The

experiments on the coupling hypothesis show that test data

strong enough to eliminate simple errors is strong enough to

eliminate at least qq.q77% of random pairs of errors, and

qq.74% of correlated pairs. The failings of the coupling

effect for higher order errors were too slight to be

observed. Program complexity does not seem to create

problems for mutation analysis. In all, 1,090,000 complex

mutants were considered, and only 45 of them. were

nonequivalent changes not eliminated by the first order test

data. All of the observed failures of the coupling effect

were alterations of logical tests, and all but one were

either alterations of a comparison operator and one of its

operands, or alterations of both operands. We could make a Ii
new mutagenic operator: "change a comparison operator and

one of its operands", since this would still be only

quadratic in program size. Call it C01. The potential

operator C02: Ochange both operands of a comparison', is

not as attractive, since it would be cubic in program size.

4 However, it is possible that C02 is coupled to COl. If an

4'1



67

experiment of the efficiency of C02 relative to COl (after

the fashion of Chapter VI) should support this, then adding

one more quadratic operator would correct almost all of the

weaknesses of the coupling effect that have been observed in

this study.

Less conclusive are the results of the study of the

human evaluation of equivalence. It was found that during

the necessary step of human judgement of mutant equivalence,

errors which weaken the reliability of mutation anlysis may

be made with significant frequency. At least until more

sensitive studies can be made in a true program testing

setting, practicioners of mutation analysis should be

cautioned to be very conservative in their marking of

equivalence.

Our observation on the efficiencies of the various

mutagenic operators indicate that mutation does not

inherently limit us to inefficient execution during testing.

*' The operators requiring a run-time symbol table either are

not useful or can be simulated by other operators. The

operations that were new for this mutation analysis system,

affecting input and output, provided no difficulties, at

least for the case of read-only and write-only sequential

files. Future syste.s and studies must address more

flexible input/output access methods.

In short, the concept of matation analysis has been

., successfully transferred from Fortran to Cobol, and

. • ,}" , L/



69

experiments performed with the Cobol system provide strong

justification for confidence that a program tested with

mutation analysis will perform reliably.



69

APPENDIX A

Ct4S.1 USERS GUIDE

Allen Acree

July 1, 1q79

Documlent CMS-1.1

K V



70

INTRODUCTI ON

The Cobol Mutation System (CMS.1) has been developed at the

Georgia Institute of Technology by Allen Acree, Rich

DeMillo, Jeanne Hanks, and Fred Sayward. It is based in

part on the Pilot Mutation System (PIMS, later renamed

FMS.1) for Fortran designed at Yale University, and

implemented at Yale University, Georgia Institute of

Technology, and the University of California, Berkely.

Program mutation is a method for program testing. The

underlying assumption is that programmers produce programs

that are, in some sense, nearly correct. The goal of the

mutation system is to aid in the selection of good test data

by taking advantage of this fact. A mutation of a program P

is a program P' that differs from P In only a single minor

change, such as substituting one variable for another in an

assignment or changing a + to a - in an arithmetic

S{.expression. Usually the number of simple mutants of P grows

quadratically with the size of P. Naturally, some of these U
mutations will produce mutant programs that are functionally

equivalent to the original, but for the others Ae should be

able to find test data that will distinguish between the
original progaram and the mutant.

a CMS.1 is designed to take as input a fixed program P,

and to automatically produce mutants of it according to a

'II oip -- i- c - '-....- ' ", --



71

set of mutagenic operators. The system will then accept

test cases from the user, run the original program and all

its mutants on it, and tell the user how many mutants have

been "killed". (A mutant is killed when it fails by program

fault or produces a different output than the original

program.) The aim, of course, is to kill all the mutants,

or at least to kill enough so that the user is reasonably

certain that those remaining are functionally equivalent to

the original program and could never be killed. At this

point the user has a set of test data that is sufficiently

powerful to distinguish between the original program and all

its simple (nonequivalent) mutants. According to the

coupling hypothesis this test data will also be sufficiently

powerful to distinguish between the original. program and

mrost other programs "close" to it. (including multiple

mutations.) This hypothesis has been proved for certain

classes of programs and for certain definitions of *close",

and theoretical work continues in. this area, Recent

experiments with higher order mutants of Fortran and Cobol

programs also support this hypothesis.

f I' Thus the user can, with the aid of CMS.l, produce test

data that will distinguish between the program used as input

and any program "close" to it. Since we assume that the

I? program used as input is close to a correct program, the

test data will be sufficient to distinguish between the

Input program and the correct program, if they are not



72

equivalent. So the test data will be sufficient to

demonstrate program correctness, to a high degree of

certainty.

rMPLEMENTATrON

The user of CMS.l provides the name of the file

containing the source program. This program should be in

the subset of the Cobol language specified later. CMS.7,

parses this source program into an internal form suitable

for interpretive execution. This internal form is also

suitable for Odecompilation*, and the user can be provided

with a decompiled version of any statement. This decompiled

statement may not be textually identical to the original

source, but it should be equivalent.

The system then produces a file of all mutations of

the original program. These are stored, not as complete

programs, but rather as. short descriptions of how a mutant

is to be created. The user is then asked to provide a file

or files of test data for his program. These files may be

( created outside CMS.1 using the editor, or they may be

created won the fly* in CMS.1, with editing capability being

restricted to backspace and line delete. However the user

choses to provide the input files, CMS.1 interpretively

4executes the original program on this test data, saving the

output. The user may examine the output and decide whether

the otput hethe



73

or not to accept it. If he does, then the test data is run

against all enabled mutants, and the results of each are

compared to the results of the source. A mutant producing a

different result is marked "killed". The user is then

presented with a statistical summary. If he wishes, he may

also examine more detailed information about the mutants

still living. He may also review the test cases accepted so

far. Then the cycle repeats until either an error is

uncovered in the original program, or the user is satisfied

that all remaining mutants are equivalent to the original.

A CMS.1 run may be interrupted and continued later, with the

system saving all information necessary for the resumption

of the run.

In response to the experience of trying to transfer

FMS.l from one environment to another, we have decided to

try to do as much as possible to isolate machine

Idependencies. At the risk of possible inefficiencies, we

will concentrate relerences to file access techniques,

character storage, word length, and such machine- and

operating system-dependent features in a few small routines.

, For example, FMS.1 contained 72 random access calls in the

DEC Fortran dialect. Each of these had to be rewritten as a

PRIMOS call during the transfer procedure. In CMS.I, all

random access is through the routines REARAN and WRTRAN.

Those two (small) routines are all that need to be modified

to interface CMS.1 with a different operating system. For

, -. .



74

efficiency, some machine dependency is tolerated in the

interpretive execution phase of CMS.1, since this is the

most time-consuming phase of the mutation process. However,

this dependency is kept to a minimum even here. The buffers

used in interpretively executing programs are integer arrays

of one or two dimensions. The sizes of the arrays are

parameters. We assume in designing these arrays that a

single integer consists of at least 16 bits. (i.e.

integers are restricted, wherever possible, to a range of

+/- 32783.)
S

NOTES ON THE COBOL PILOT MUTATION SYSTEM

1. We limit ourselves to a simple subset of the language.

2. We limit ourselves to ten sequential input files and

ten nonrewindable tequential output files. This should

be sufficient for such common applications as making

' Ksorted transactions against a sorted master file and

producing a transaction report and an updated master

file. There is a limit to the amount of storage

allocated for each input file and each output file for

each test case. The files are "packed" into arrays by

replacing each string ot repetitions of a single

character (such as a string of blanks) by a single

character and a repeat count. This implies th;,t the,

4,o - 2 . - ,4 '



75

user can submit larger test cases (more records) if he

can arrange to use such strings whenever possible.

3. Rather than providing for a "predicate subroutine* as

program output to determine whether they have produced

identical output files. Mutants can also be eliminated

by run-time faults such as attempting to read an

unopened file, data fault, etc. To avoid the infinite

loops that some mutations are bound to create, a mutant

is eliminated if it executes more than a certain

maximum number wf statements. Currently this maximum

is set to three times the number of statements executed

by the original program on the test case.

4. mutations to be performed:

1 DECIMAL ALTERATION - Move impl.ied decimal in

numeric Items one place to the left or right, if

possible.

2 REVERSE TWO-LEVEL TABLE DIMENSIONS

3 OCCURS CLAUSE ALTERATION -Add or subtract one

from an OCCURS clause.

4 INSERT FILLER - of length one between two items in

a record.

5 FILLER SIZE ALTERATION - Add or subtract one from

* I length.

6 ELEMENTARY ITEM REVERSAL

7 FILE REFERENCE ALTERATION

* ~ 7



76

8 STATEMENT DELETION -Replace by null operation.

4 GO TO -- > PERFORM

10 PERFORM -- > GO TO

11 THEN - ELSE REVERSAL - Negate condition.

12 STOP STATEMENT SUBSTITUTION

13 THRU CLAUSE EXTENSION

14 TRAP STATEMENT REPLACEMENT

15 SUBSTITUTE ARITHMETIC VERB

16 SUBSTITUTE OPERATOR IN COMPUTE

17 PARENTHESIS ALTERATION - Move one parenthesis one

place to the left or right

1s ROUNDED ALTERATION - Change ROUNDED to truncation,

and vice versa.

IQ MOVE REVERSAL - reverse direction- of move in

simple MOVE A TO B, if the result would be legal

in Cobol.

20 LOGICAL OPERATOR REPLACEMENT

21 SCALAR FOR SCALAR REPLACEMWENT - Substitute one

(non-table) item reference for another, where the L
result would be legal. [

22 CONSTANT FOR CONSTANT REPLACEMENT

23 CONSTANT FOR SCALAR REPLACEMENT

24 SCALAR FOR CONSTANT REPLACEMENT

25 NUMERIC CONSTANT ADJUSTMENT

4,J
.. t W



77

COBOL SUBSET ACCEPTED BY CMS.1

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

(AUTHOR. comment-entry.)

(INSTALLATION. comment-entry.]

(DATE-WRITTEN. comment-entry.]

[DATE-COMPILED. comment-entry.]

[SECURITY. comment-entry. )

[REMARKS. comment-entry.]

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

[SOURCE-COMPUTER. comment-entry.)

[OBJECT-COMPUTER. comment-entry. )

[SPECIAL-NAMES. [ (COl IS mnemonic-name]

INPUT-OUTPUT SECTION.

FILE-CONTROL.

(SELECT file-name ASSIGN TO JINPUTI I OUTPUTi)...]

NOTE: 0 <- i <Q

DATA DIVISION.

PILE SECTION.

V ,1I 4'



78

I
[FD file-name RECORD CONTAINS integer CHARACTERS

(LABEL RECORDS ARE [ STANDARDI OMITTED )I

DATA RECORD IS data-nam e.

level-number (data-name I FILLER }

[REDEFINES data-name-21

[ PICTURE I PIC ) IS character-string]

[OCCURS integer TIMES]

(WORKING-STORAGE SECTION.

(77 level entries.]

(record entries .]...]

NOTE: Record entries are the same as in the file section,

except VALUE clauses are permitted. Level 88 items

(condition names) are not supported. Legal PICTUREs are

signed and unsigned numeric, edited numeric, and

• alphanumeric. The USAGE clause is not supported, and

DISPLAY is assumed throughout.

PROCEDURE DIVISION.

* [paragraph-name.]

ADD (ident-i I lit-i) [ident-2 1 lit-2]... TO I

GIVING ) ident-m

(ROUNDED] (ON SIZE ERROR imperative-statement]

* . CLOSE filename-I (filename-2]

COMPUTE identifier (ROUNDED] arithmetic-expression

.%



7q

[ON SIZE ERROR imperative]

DIVIDE (ident-l I lit-li ( INTO I BY } (ident-2 I

lit-21

(GIVING ident-31 [ROUNDED] (ON SIZE ERROR imperative]

EXIT.

GO TO paragraph-name

GO TO paragraph-name-i [ Eparagraph-name-2] ...

DEPENDING ON identifier].

IF condition {statement-1 I NEXT STATEMENT)

(ELSE (statement-2 I NEXT STATEMENT I ]

NOTE: logical operations AND and OR and comparisons

NOT GREATER THAN, etc., are permitted. Arithmetic

operations within the conditional expression and

condition names are not supported. Sign tests and

class tests are supported.

MOVE ident-1 TO Ident-2 [ident-3] ...

MULTIPLY [ident-1 I lit-1} BY lident-2 I lit-2)

(GIVING ident-31 (ROUNDED] (ON SIZE ERROR imperative]

OPEN (INPUT tilename-1 (filename-2] ]h- -

(OUTPUT filename-3 [filename-41 I

SPERFORM paragraph-name-1 (THRU paragraph-name-2]

PERFORM paragraph-name-i (THRU paragraph-name-21

[ident-1 I integer-1) TIMES.

PERFORM paragraph-name-I (THRU paragraph-name-21

(VARYING identifier-i FROM (identifier-2 I literal-i)

B(identifter-3 Ititeral-2)) UNTIL condition



80

READ filename RECORD (INTO identifier]

AT END imperative

STOP RUN.

SUBTRACT [ident-l I lit-1) [ident-2 I lit-2) ... FROM

(ident-m I lit-m}

[GIVING ident-n] [ROUNDED] (ON SIZE ERROR imperative]

WRITE record-name [FROM identifier-li

[AFTER ADVANCING {ident-2 I integer I mnemonic) LINES]

THE CMS.1 RUN

The four phases of the CMS.l run are the -ENTRY phase,

the PRE-RUN phase, the MUTATION phase, and th POST-RUN

phase. The ENTRY phase is executed only when the user first

enters the system. Thereafter the PRE-RUN, MUTATION, and

POST-RUN phases are exected cyclically.

$,U I. The entry ?hase. *
The session will begin when the user enters the system by

logging in and typing

seg run>cpms

If all is well, the system will respond:

i1 WELCOME TO THE COBOL PILOT MUTATION SYSTEM

followed by:



PLEASE ENTER THE NAME OF THE COBOL PROGRAM FILE:

The user should do just that. CMS.1 creates several working

files of its own, whose names are variations of the source

file name formed' by adding suffixes to it. The system

checks to see if those working files already exist. If they

do, the user can either continue the previous run on that

source file where he left off, or he can start over from

scratch. Therefore, if the working files already exist, the

system asks:

DO YOU WANT TO PURGE WORKING FILES FOR A FRESH RUN ?

If a new run is needed the system begins with the message

PARSING PROGRAMI

A syntax error in the source program automatically aborts

the Cr45.1 run. The user must correct the error and re-enter

the systemr. Errors are reported to the user as a source

program line number and the probable cause.

The system then Issues the message

SAVING INTERNAL FORM

and asks

WHAT PERCENTAGE OF THE SUBSTITUTION MUTANTS DO YOU WANT TO

MAKE?

Since medium to large Cobol programs may generate tens of

thousands of mutants, mrost of which are simple

I~i~ substitutions, the user may want to look initially at only a

*sampling of the mutants. It has been our experience that

F eliminating all of the non-equivalent mutants in a 10%



82 I

sample gives test data strong enough to eliminate at least

9q% of all nonequivalent mutants.

CREATING. MUTANT DESCRIPTOR RECORDS

II. The pre-run phase.

In this phase the user supplies test data and turns on

mutants. The system asks

DO YOU WANT TO SUBMIT A TEST CASE ?

and the user should respond YES or NO. The system will ask

WHERE IS filename-i ?

(if there is a SELECT statement for that file)

to which the user should respond HERE or <filename>

If it is HERE, the user enters the input data directly,

ending with the control-C for end of file.

The system then goes through the same procedure for each

input file named in a SELECT statement.

At this point the system will execute the program.

interpretively on the test input. After finishing, the

input and output files will be displayed. The user is

asked:

IS THIS TEST CASE ACCEPTABLE ?

To which the user should respond YES or NO.

If YES, the test case (input and output, along with the time

used, record counts, and a bit map of statements executed)

are catalogued for later use with mutant programs. If No,
the test case is purged from memory.

,I



83

This process of entering test cases iterates until the user

states that no more are to be entered at this time.

III. The Mutation Phase

At this time the system will ask

WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ?

unles all mutant types have already been enabled. The user

should respond ALL or NONE or SELECT or should give the

numbers of the mutant types to be used next. SELECT causes

the system to list each type that has not yes been

considered, and then ask for types.

The list of numbers should be terminated with the command

STOP. Ranges of types can be specified by TO. For example

the reply

14 20 to 25 stop

would enable the TRAP mutants and the data reference

substitution mutants.

At this time the test cases will be run against the mutant

programs. The time that this takes depends or. the number of

test cases presented, the length and "density' of the

Kprogram, and the types of mutants currently being

considered. For efficiency, a test' case that does not

execute a given statement is not executed on. any mutant

* whose mutation is to that statement. The mutant could never

be killed it execution never reaches the affected statement.

V This Is the purpose of the bit map saved with the test case.

a.* __ _ _ __ _ _ _ __ _ _



84

IV. The Post-Run Phase

After all the test cases have been executed for each mutant

still alive, the system will display the statistics of the

run, indicating the number of mutants created and the number

still alive of each type that has been considered, the

percentage of each type killed, and the number of each type

marked equivalent. Now the user has a chance to view the

mutants still remaining (either all of them, or selected

types) or he can send information about the run to an output

file for later printing. It is while viewing the live

mutants at his terminal that the user has an opportunity to

mark the mutants equivalent. After the live mutants, the

user has a chance for a similar review of the m.utants marked

equivalent. He can "unmark" mutants at this time. The user

also is able to view or print the test cases at this time.

When asked about either the live or equivalent mutants or

the test cases, the user may respond YES or NO or OUTPUT.

OUTPUT means to send the information to the log file. To

end the post-run phase the user types either HALT, ending

the session, but saving the temporary files for future

resumption, or LOOP sending the system back in a loop to the

pre-run phase to enter more test data and/or consider new

mutant types.

The user may terminate the session at any time a command is

, requested by typing KILL, but the state of the system files

- .1



85

after such an abnormal termination is undefined.

Continuation of the testing session may not be possible.

The user can receive an explanation of his options at many

points in the cycle by typing HELP.

CMS.1 AUXILLIARY FILES

CMS.1 creates several tiles during execution. Some are

random access files used for processing the mutants and test

cases, and others are needed for the restart capability.

When the user provides the name of the file containing the

test program, CMS.1 adds suffixes to that name to create

names of the auxilliary files. For example it the user

provided TEST-PROGRAM-1 as a source program tile name, the

internal form of the program used by the interpreter and

decompiler, would be stored in the tile TEST-PROGRAM-..IF.

The test cases would be stored in TEST-PROGRAI-l.TD and

TEST-PROGRAM-l.TS, and so fourth. One file deserves special

discussion. That is the logfile (TEST-PROGRAM-1.LO in this

example) . This file contains

(1) A listing of the program, with line numbers.

I (2) A statement about the percentage of mutants

created.

(3) h summary of test case and mutant transactions, in

the order in which they occurred. Whenever a test case

wlm



is submitted, a message is logged about that, along

with the filenames (or <HERE>) from. which the data was

obtained, and whether the test case was accepted or

rejected. Mutant types are listed as they are enabled.

(4) After each mutation phase the status is written to

the file, exactly as it appears on the user's terminal.

(5) An optional listing of the live mutants, provided

if the user responds OUTPUT to the question about

viewing live mutants.

(6) An optional listing of the test cases, provided if

the user responds OUTPUT to that question. A listing

of the test cases is strongly recommended. When the

test data is displayed on the user's terminal, lines

must be truncated to 79 characters. The full lines are

placed in the log file.

CMS.l does not automatically delete these working files

after a run is completed. They are retained for possible

resumption of testing. It is the responsibility of the user

to delete the files when they are no longer needed. The log 1
file is not automatically printed, either. Each run appends

to the end of the file where the previous run left off. The

user must print the file outside of CMS.1 if he wants a hard

* :copy.

, 4



87

APPENDIX B

CNIS.1 INTERNAL SPECIFICATIONS

Allen Aeree

October, lq7q

Documnt CM S 2.2



17 A-A091 029 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A--ETC F/A 9/2

A. 1.' AUG A0 A T ACREE DAAG29-80-C 0120
UNCLASSIFIED 6 1 T_ I CS A/0S122NL

EEEEEE hE.hEEEmEE 2E _ 2h



14. 13

MftROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



88

PART I. FILE FORMATS

SOURCE PROGRAM <filename>

The source program is assumed to be in a sequential i

system file, in the standard COBOL format. That is, columns

1-6 are for the sequence number (and are at this time

ignored), column 7 is either blank or contains a hyphen (for

the continuation of a non-numeric literal) or an asterisk

(for a comment line). Information beyond column 72 is

ignored.

INPUT FILE (EXTERNAL)

The input file(s) can also be supplied by the user as

standard sequential files. The user only has to tell CMS.1

the name of the file. The alternative is for the user to

enter the file directly while he is in CMS.1. When

requested, the user should type the file into the terminal,

one record per line, just as if he were punching a card

deck. The only editing that can be supported in this mode

-1 is backspace-erase (control-h), and line-kill (shift-del). 0]
The end-of-file is indicated with a control-c. It is of

course possible to create some input files outside CMS.1 -

using whatever tools the user has access to, and to create

the others "on the fly" in CMS.1, if the user wishes. |I

Record sizes for input and output files are limited to 150

I



characters.

TEST FILES (INTERNAL)

The internal test files will contain all test cases

that have been created at that time. There are two files

containing test information, the test status file, and the

test data file.

TEST STATUS FILE <filename>.ts

Each record of the test status file contains 42 words.

The first record contains global information.

word contents

------------------------eeee eee-- -------------- ----- ----- ----

1 1 if INPUTO is used in the program
0 otherwise.

2 through 20 similar for INPUT1 to INPUT9
and OUTPUTO to OUTPUTM.

21 The total number of test cases that
have been defined.

22 The number of test cases that were
defined prior to this pass.

23 pointer to the next record position
after the last, for appending.

24 through 42 Not used at this time.

This record will be followed by two records for each

test case. The first has the format:

word contents

1 The starting position of INPUTO in

a 6 -6 -"



40

<filenam~e>.TD

2 The number of records in INPUTO.

3 through 40 Similar for the other files.

41 The number of statements executed by
the original program on this testcase.

42 Not used at this time.

The second record contains a bit map for the

statements executed by this test case. If this bit map size

(530=42x15) is not adequate, the system parameter TSFRS,

which is currently set to 42, may be increased, and the

system recompiled. The extra. space in the other record

types will be wasted.

TEST DATA FILE <filename>.td

The test data file contains the actual test cases,

with the input file(s) first, followed by the output file(s)

of the original program. These will be in packed format ii
(see PACK and UNPACK), with strings of repeated characters H
replaced by single characters and repeat counts. The sizes

of each file buffer are set by the system parameters IBSZ

and OSZ. In systems where random access files must have

fixed record lengths, IBSZ must be equal to OBSZ.

t MUTANT RECORD FILE <filename>.mr

The mutant records are stored in binary formate at

four integers per mutant record. All records for a

particular mutant type are stored contiguously, followed by

all records for the next mutant type, etc.



MUTANT STATUS FILE <filename>.ms

The record size for the mutant status file is 16

words. The first section of the file contains headers for

each mutant type.

mutant type

on or off ever (initially zero)

on or off this run (

inst record pointer for status block

These may be packed at four headers per 16-word

record. A2l the header blocks remain core-resident during

the entire run.

The first record, before these headers, contains a

I 4count of the total number of mutants in its first word. The

other words are not used.

" For each mutant type there is then a status block, of

one record.

total mutants f or this type

, bit map length in words

nrrf pointer for the first mutant record ot

this type

number of live mutants

number of dead mutants



92

number killed by trap(*)

number killed by time-out

number killed by data fault

number killed by initialization fault

number killed by I/O fault in OPEN/CLOSE i
number killed by attempt to read past EOF|

number killed by writing too much

number killed by output too large for buffer

number killed by array subscripts out-of-bounds

number killed by incorrect output !i

number killed by garbage in the code array

* also includes attempt to execute beyond end of code,

such as would happen if a mutation deleted the last STOP RUN

statement; and size errors where no SIZE ERROR clause is

specified.

"4 The status block will be followed by bit maps.

Slive bit mapi

daea bit ma

Iequiv. bit map

In all of the bit maps, the first bit of each word Isj not used. The bit maps are of varying lengths& depending on 1

f! - 1I-
; ;;- .'- . .. ... - -7 - -



q3

the program and on the mutant operators. The bit map

lengths are rounded up to the nearest whole-record size.

The record size for this file is the system parameter MSFRS

(currently 16).

NOTE ----- We make no provision for keeping information

on how each individual mutant was killed. We keep the full

matrix of counts of mutant types versus kill mode.

INTERNAL FORM <filename>.if

SYM4BOL TABLE

STATEMENT TABLE

CODE ARRAY > binary copies from INFORM
and HAS4

rNrT

HASH TABLE /

INIT is the initial seqment of memory containing literals,

PICTUREs, and memory initialization information.

OUTPUT FILE <ftlename>.lo

This is a sequential file containing information on

the run. Its contents are controlled by the user, using the

OUTPUT command. Typical contents would be a listing of the

source program, the test cases, the status after each pass

* 'through the system, and a listing of some or all of the live

mutants.

INITIAL. HASH. PACK

The same as HASH-TABLE but containing only the

, -11 -



94

reserved words and their tokens.. This Is stored as a packed

sequential file. in this case "packed* means that we store

a count of null records, followed by a non-null record,

followed by a count of null records# etc. until all records

(up to the hash table size) are accounted for.

AI



I[t. -"
.95

I.
PART II. INTERNAL FORM SPECIFICATIONS

I.

SYMBOL TABLE

j The symbol table is an 1OXN array of integers. A

simple data item (group or elementary) is described by one

row in the array. A table item is described in two rows,

the second being a dope vector. Some conventions used are

that field I in each row (record) points to the hash table

entry, for the name. If the item has no name (such as a

tiller or literal), field I is zero. Field 2 is always a

code for the type of the record. Its value determines the

meaning of the other fields.

ROW 1: the program name

Field 1 points to the name, fields 2 to 4 hold integers

for the date of last compilation, and the other fields
I

are not used.

ROW 2: INPUTO

field-1 is used for the hash table pointer to the name

of the file (as it ts known to the program).

field-3 is a pointer to the symbol table entry for the

data record.

S ' field-6 Is the record length. (field-1 is 0 It there

it!
o /if



q6

is no SELECT clause for this device)

ROWS 3 through 21

Like row 2, for INPUTI to INPUTQ, OUTPUTO to OUTPUTQ.

ROW 22 The top-of-page mnemonic for the output files

field-1 points to name in hash, if one has been

declared, otherwise it is zero.

DATA ITEMS i

field meaning

1 Index of the identifier in the hash table,
so that print name can be recalled. For
FILLERS, this is zero.

2 A code for the type of the object.
1 for unsigned numeric identifier
2 for signed numeric identifier
3 for non-numeric identifier

" 4 for edited numeric item.
5 for group item

3 The level number

4 Pointer to the PICTURE string in program
memory for edited numeric items.
OR the decimal position (from right) for
unedited numeric items.
OR not used.

5 A pointer to the start of the item in program
memory. For an item in a table, this is the
constant term in the address calculation.

6 The length of the item, in characters.
Ifl All items are stored with usage of DISPLAY.

7 The depth of the item in the table structure.



q7

(0 for scalars, 1 for one-level tables or for
rows in two-level tables, 2 for two-level
tables entries.)

8 Pointer to VALUE string in program memory.

10 The source program line number on which the item

description began

SECOND ROg FOR TABLE ITEMS

field meaning

2 code - 6

4 the multiplier for the first subscript.

5 the multiplier for the second subscript.

6 The maximum value for subscript-i.

7 The maximum value for subscript-2.

8 The number of OCCURances of the item.

LITERALS DEFINED IN THE PROCEDURE DIVISION "

field meaning
------ --------------- ---- -- -

2 code = 7 for numeric literals
code - 9 for non-numeric literals
code - 10 for the Otwiddle* of a numeric literal

4 decimal position, for numeric literal

5 pointer to value in literal pool

6 length

NOTE: SPACES and ZERO (and twiddles of ZERO) have entries

of this format which are present by default, even if not

used in the program.

14 IPARAGRAPH NA14ES



98 L

field meaning

-- - -- - -- - -- - - -- - - -- - - - ------------

1 pointer to name

2 code9

3 statement table index of first statement

4 statement table index of last statement

The symbol table is stored in the same order as the

items are encountered in the code. In particular, entries

for data items defined in the DATA DIVISION are stored

almost line for line as they appear in the source code, with

nesting being Implicit in the level numbers and the

sequence. One deviation from this Is the inclusion of dummy

FILLER entries of length zero between elementary Items.

This Is to facilitate the mutant operator that inserts

fillers to avoid having to change procedure division

references.

M4 EMORY

The first 30 characters of memory are used as a

temporary arithmetic register. Following that comes the

constant data area. This area includes:
PICture strings - for edited numeric items.

There are 3+4. words, where N is the length of the

*picture string. 'Word 1 is the length of the string;

word 2 is the number of digit positions; and word 3 is

the number of digits to the right of the decimal point.



99

Then follows the picture string, in Al format. An

editing MOVE uses this string to interpretively execute

the MOVE instruction.

VALUE literals

for numeric items - word 1 is the number of digits,

word 2 is the number of digits in fraction, and words 3

to n+2 are the digits themselves. An operational sign

is coded in the last word with the last digit. for

nonnumeric items - word 1 is the length N in

characters, and words 2 to N+1 are the characters, in

Al format.

Procedure Division literals

Digits or characters only. Since these items have

individual symbol table rows, the extra information

about length, decimal position, etc, is stored there.

SPACES and ZERO are stored in positions after the

arithmetic register in a format that can be referenced

either as VALUE or Procedure Division literals,

depending on the start pointer.

After the constant area comes the variable area. A--

data is storage on a USAGE IS DISPLAY basis, one character

per word. Since some mutations change the data structure,

reallocation between executions is sometimes necessary.

STATEMENT TABLE

, The statement table is composed of triples of

L , 'i - . - -



100

integers, field 1: the starting position of an instruction

in the code array. When a procedure division statement

is mutated, che original code is not modified.

Instead, a mutated copy of the instruction is created

and appended to the end of the code array. Field 1 is

then modified to point to this mutant copy of the

instruction.

field 2: The line number of the statement on the

source listing.

field 3: A value of 0 means this statement is a

continuation in a sentence (no period after previous

statement.) A value ot 1 means a new sentence. A

value greater than 1 means the beginning of an ELSE

clause.

INTERNAL FORM OF PROCEDURE DIVISION

Each instruction is preceeded by a word containing the

length of that instruction.

" meaning syntax I
--------------------------------- eeeeeeeeeeeeeeeeee

MOVE <f4OV><n><source><dest-l>. .. <dest-r.>

ADD <AD><rnd><size><r.><op-1>... (op-n>

(rnd is 0 for truncation, 1 for round)
'1 (size is 0 if no SIZE ERROR clause

has been specified, and 1 if it has.
* The SIZE ERROR branch immediately follows
. the current statement, followed by

] - -- .-- -' . ... .... . .....



101

the no error branch.)

ADD-GIVING <ADG><rnd><size><n><op-l>. . .op-n><dest>

SUBTRACT <SU><rnd><size>,<n><op-1>'.. .(op-n>

SUB-GIV <SUG><rnd><size><n><op-1>.. .<op-n><dest>

4ULTIPLY <MU><rnd><size><op-l><op-2>

*MULT-GIV <MUG><rnd><size><op-1><op-2><dest>

DIVIDE <DI><rnd><size><op-1><op-2>

COMPUTE <CO>(rnd><size><ident><arith. exp.>

note: the arithmetic expression
is interpreted by a calculator
subroutine.

GO TO <GO><procedure>

GO TO... DEPEND <GOD><n><proc-l>. ..<proc-n><ident>

PERFORM <PE><procedure><procedure-2>.

(procedure-2 may be null if no

4 THRU clause is specified.)

PERFORM-UNTIL <PEU><proc-l><proc-2><condition>

PREFORIM-VARYING <PEV><proc-l><proc-2><idenit><fromr><by>

<REP1>(pl-stmt-ptr><p2-code-ptr>ccond.>

REPi is the iteration control instruction.* J jOn return from the PERFORM, the control
goes to this instruction. Pl-stmt-ptr is

* a statement table pointer corresponding to
the symbol table pointer proc-1.
P2-code-ptr is a code pointer for the

* insertion of the return.

ii IPERFORM-TIMES <PET><procedure><procedure-2><ident>

* <REP2><count><start><stop>

~jf fSimilar to REPI, but count holds the



102

value that was in ident when the PET
was first executed.
Start and stop are statement table
pointers for the perform range.

no op <RET><0>

return <RET><addr>

note: each paragraph is ended with
a "no op" statememt. When a PERFORM
statement is executed, it first
changes the no op at the end of its
range to a return by inserting the
return address (in the statement
table) and then transferring to
the beginning of the range.
When a RETURN is executed, it
transfers to the address in the
instruction and also changes itself
to a no op by changing its address
field to 0.
No op's are also inserted when NEXT
SENTENCE is used or impiled in an IF
statement.

IF <IF><else-s tm.t-ptr><condition>

pointer is for transfer if condition

is false.

NEGATED IF <NIF><else-stmt-ptr><condition>

OPEN <OP><l..20>

(for which file)

* 'CLOSE <CL><1..20> -

READ <RE><1..10><from-ident>

WRITE <WR><I..10><from-ident><advance>

,: note: advance is pointer to symtab.
Target is either top-of-page ine-
Oonic, an identifier, or a nueric

~ I literal.

STOP RUN <STOP>

'VTRAP <TRAP>

77Ii



103

NOTES ON THE INTERNhL FORM

1. "identifier',"ident*, and Oid", as well as lop" are

pointers to symbol table entries describing identifiers

or literals. The symbol table will contain information

about type, length, location, etc.

2. Any operand could also be a table reference. In this

case, instead of a single integer we would have

lopitindex-lI or lop] index-1i [index-2]. The

interpreter will know from the symbol table entries for

op whether 0,1, or 2 indices (subscripts) are needed for

a valid reference. Index-i (and index-2) are also

references via the symbol table to simple

(unsubscripted) variables or to numeric literals.

3. *procedure" and OprocO are pointers to symbol table

entries describing paragraph names. The symbol table

will contain pointers to the first and last statements

in the paragraph, in the statement table.

I MUTANTS

7TA e mutant descriptions are stored in four integers.

The first is the mutant type, and the others (not all types

ij use all four integers) are used for auxilliary Information,

as detailed in PART III.

- 4
- __



104

PART III. DETAILS OF MUTATION PROCESS

MUTANTS

DECIMAL Move implied decimal in numeric items one place to

the left or right, if possible.

DIMENS1 Reverse row and column OCCURS counts in a two level

table.

DIMENS2 Increment or decrement (by 1) an OCCURS count.

INSERTF Insert a filler with PICTURE X.

ALTERF Alter a filler wish PICTURE X(n) to X(n-l) or X(n+l)

if possible.

REVERSE Reverse adjacent elementary items in a record.

FILEREF Change a file reference from one input file to

another, etc.

DELETE Delete a statement (change it to a NO-OP).

GO-PERF .ange a GO TO to a PERFORM, unles the last

statement in the paragraph is a stop or transfer of control
(in which case it would make no difference'.

PERF-GO Change a PERFORM to a GO TO.

THENELS Reverse the Ithenw and *else" clauses in an IF

(negate the condition).

STOPINS Insert a STOP RUN in the program.

THRUEXT Extend the TRHU range of a PERFORM.

TRAP Change a statement to a TRAP, which always fails when

lv

IJ iLIL11 -.1 k.,



105

executed. This is for statement coverage information.

ARIVERS Change one arithmetic verb to another.

ARIOPER Change an arithmetic operator in a COMPUTE

statement.

PARENTH A!ter the parenthesization of an arithmetic

expression in a C(O4PUTE statement.

ROUND Change rounding to truncation, or vice versa.

MOVEREV Reverse the direction of the MOVE in a simple binary

move, if such would result in a legal COBOL move.

LOGIC Change a logical comparison to some other comparison.

S-FOR-S Substitute one scalar (unsubscripted) named data

reference for another.

C-FOR-C Substitute a constant (numeric or nonnumeric

literal) for another.

C-FOR-S Substitute a constant for a scalar'.

S-FOR-C Substitute a scalar for a constant.

CONSADJ Increment or decrement a numeric literal by 1 or by

1 whichever is larger.
I

MUTANT DESCRIPTORS

DATA MUTATIONS

(1) <DECIMAL><sym.tab.loc><+1 I -1><x>
i~l I(2) <OlMENSl><syv..tab.!ooc><x><sym.tab.loc.-2>

*for *reverse OCCURS numbers for these two

" -F, locations'. They are assumed to be the

4 '__ _ _ _ _



- 106

two dimensions for a two-level table.

(3) <DIMENS2><symp.tab.loc><code><x>

where code -0 for "add 1 to OCCURS'

code - 1 for "subtract 1 from OCCURS"

(4) <I4NSERTF><symbo1 table location>(x<<

(5) <ALTERF><sym..tab.loc>C+1I-1><X>

(5) <REVERSE><symr.tab~loc.><next.elementary.loc><x> i

I INPUT/OUTPUT MUTATIONS

(7) <FILEREF><statement><x><new file-code>I CONTROL STRUCTURE MUTATIONS

(8) <DELETE><statement><Y><x>

(q) (GO-PERF><statement><x><x>L

(10) <PERF--GO><statemnent><x><x>

(11) <THENELS><stateirent><x><x>

(12) <STOPIt4S><statement><x><x>

(13) <THRUEXT><stateiment><new paragraph limitt>(x>

.4 (14) <TRAP><statetrent><x><x> 1
PROCEDURAL MUTATIONS 1

(15) <ARIVERB><statement><new operation><x>

to change.ADD to SUBTRACT, etc

(16) <ARIOPER><statement><field><new operation>

to change an operation in a COMPUTE.

$ 'field* is the location in code relative

fto the beginning of the statement. (op code

I, location.)

(17) <PARENTH><Statement><from-field><to-field>

WWI,



107

(18) <ROUND><utatewnent><x><x>

(19) (MOVEREV><statewment><x><x>

(20) <LOGIC><statement><field><new value>

(21) <S-FOR-S><statem~ent><field><new syu'.tab loc.>

(22) <C-FOR-C><statement><field><new loc>

(23) <C-FOR-S><statem.nt>(field><new bec>

(24) <S-FOR-C>(statement><field>(new boc>

(25) <CONSADJ><statement><field><new boc>

Hence th.e mutants can be stored in a file of

4 x N integers.



103

APPENDIX C

A CMS.1 Script



r -

109

The following 1 a script of a CMS.I run on a program originally from
the Army SIDPERS system. The program has been modified somewhat, minly in
the reduction of the record sizes to make a better CRT display. The program
takes as input tew files, representing and old backup tape and a new one.
The output is a summary of the changes. The input files are assumed to be
sorted on a key field. The program has 119S mutants, of which 21 are easily
seen to be equivalent to the original program. Initially ten test cases were
generated to eliminate all of the nonequivalent mutants. Subsequently a
subset of five test cases was found to be adequate for the task. The entire
run took about 10 minutes of clock time, and 2 minutes and 13 seconds of CPU
time on the PRIME 400. Note that this is a trace of a terminal session. The
output of the testcases is truncated to 76 characters to avoid extra
linefeeds. The full output is available on hardcopy to the tester.

WELCCOE TO THE COBOL PILOT MUTATION SYSTEM
PLEASE ENTER THE NAME OF THE COBOL PROGRAM rILE-)log-changes
DO YOU WANT TO PURGE WORKING FILES FOR A FRESH RUN ?)yes
PARSING PROGRAM
SAVING INTERNAL FORM
WHAT PERCENTAGE OF THE SUBSTITUTION MUTANTS DO YOU WANT TO CREATE)I)100
CREATING MUTANT DESCRIPTOR RECORDS
PRE-RUN PHASE
DO YOU WANT TO SUBMIT A TEST CASE ? >program

PROGRAM LAST COMPILED ON 1 11 80.

I IDENTIFICATION DIVISION.
2 PROGRAM-ID. POQAACA.
3 AUTHOR. CPT R W MOREHEAD.
4 INSTALLATION. NOS USACSC.
5 DATE-WRITTEN. OCT 1973.
6 REMARKS.
7 THIS PROGRAM PRINTS OUT A LIST OF CHANGES IN THE ITF.
8 ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE
9 OLD ETF AND THE NEW CTF ARE THE INPUTS. BUT THERE 1S NO
10 FURTHER PROCESSING OF THE ZTF HERE. THE ONLY OUTPUT IS A
11 LISTING OF THE ADDS. CHANGES, AND DELETES. THIS PROGRAM IS
12 FOR HO USE ONLY AND HAS NO APPLICATION IN THE FIELD.
13
14 MODIFIED FOR TESTING UNDER CPNS BY ALLEN ACREE
is JULY, 1979.
16 ENVIRONMENT DIVISION.
17 CONFIGURATION SECTION.
ILO SOURCE-COMPUTER. PRIME.

I' 19 OBJECT-COMPUTER. PRIME.
if 20 INPUT-OUTPUT SECTION.

21 FILE-CONTROL.
22 SELECT OLD-ITF ASSIGN INPUTI.
23 SELECT NEW-Tn ASSIGN INPUT2.
24 SELECT PRIR ASSIGN TO OUTPUTI.
25 DATA DIVISION.
26 FILE SECTION.
27 PD OLD-LTF
26 RECORD CONTAINS 00 CHARACTERS
29 LABEL RECORDS ARE STANDARD
30 DATA RECORD IS OLD-MEC.

g 31 01 OLD-REC.
32 03 FILLER Pic X.
33 03 OLD-KEY Pic X(12).
34 03 FILLER PIC X(67).,3S FD N2W-9Fr

36 RECORND CaNAINS 30 CAACU IS

ws0d.Au



1 1

3'9 LABEL RECORDS ARE STANDARD
r38 DATA RECORD IS NEW-REC.

39 01 NW-REC.
40 03 FILLER PIC X. L
41 03 WEW-KEY PIC X(121.
42 03 FILLER PIC X(67).
43 FD PRNTR
44 RECORD CONTAINS 40 CHARACTERS
45 LABEL RECORDS ARE OMITTED
46 DATA RECORD IS PRNT-LINE.
47 01 PRINT-LINE PIC 2(40).
48 WORKING-STORAGE SECTION.
49 01 PRNT-WORK-AREA.
50 03 LINS1 PIC 2(30).
51 03 LINE? PIC X(30).
52 03 LINE3 PIC X(20).
53 01 PRNT-OUT-OLD. I
54 03 WS-LN-1. PCXVLESAE55 0S FILLER PIC 2XX VALUE SPCE56 05 FILLER PIC X(30V)LE. '57 O5 LNI ] 233
58 05 FILLER Pic XXX VALUE SPACES.I59 03 WS-LN-2.

005 FILLER Pic x VALUE SPACE.
61 05 FILLER PIC XXXX VALUE IL .

62 05 LN2 PIC X(30).
63 05 FILLER Pic xxx VALUE SPACES.
64 03 WS-LN-3.
65 05 FILLER PIC X VALUE SPACE.
66 05 FILLER Pic xxIx VALUE ID I.
67 OS LH3 PIC X(20).
68 05 FILLER PlC XXX VALUE SPACE.
69 01 PRNT-NEW-OUT.
70 03 NEW-LN-i.
71 05 FILLER PIC XXXXX VALUE N

7205 N-LU! PIC X(30).
73 05 FILLER PIC XXX VALUE SPACE.
74 03 NEW-LU-?.
75 05 FILLER PIC XXXXX VALUE E '.I76 05 N-LU? PIC 1(0o).
77 05 FILLER Pic XXX VALUE SPACES.
78 03 NEW-LU-3.
79 05 FILLER Pic XXXIX VALUE * W
s0 05 W-LN3 PIC 2(20).
a1 05 FILLER PIC XIX VALUE SPACES.
0 2 PROCEDURE DIVISION.
63 0100-OPENS. i'4 4 OPEN INPUT OLD-ETF NEW-IT?.
es OPEN OUTPUT PRINTIR.
86 0110-OLD-READ.

87 READ OLD-ET? AT En GO TO 0160-OLD-ROF.Jo 0120-NEW-READ.
90 0130-COMPARES.

91 IF OLD-KEY a NEW-KEY
92 NEXT SENTENCE

94 TIPOLD-REC a NEW-NEC

93OELE OL-EG O PRT*N-~A



100 GO TO 0110-OWD-READ.
101 0140-CE-ADD-DEL.
102 IF OLD-KEY ), NEW-KEY
103 MOVE NEW-REC TO PENT-WORK-AREA
104 PERFORM 0200-M-WRT TURU 0200-EXIT
105 G0 TO 0120-NEW-REPAD
106 ELSE GO TO 0150-CE-ADD-DEL.
107 01S0-CR-ADD-DEL.
109 MOVE OLD-REC TO PRNT-WORK-AREA.
109 PERFORM 0210-OLD-WRT THRU 0210-EXIT.
110 READ OLD-ET? AT END
III MOVE NEW-REC TO PENT-WORK-AREA
112 PERFORM 0200-NW-WET TNRU 0200-EXIT
113 GO. TO 01040-OLD-EOF.
114 GO TO 0130-COM4PARES.
115 0160-OLD-COF.
116 READ NEW-ST? AT END GO TO 0180-2OJ.
117 MOVE NEW-REC To PENT-WORK-AREA.
119 PERFORM 0200-NW-WRT THRU 0200-EXIT.
119 GO TO 0160-OLD-Co..I120 0170-NEW-EOF.
221 MOVE OLD-EEC TO PRUT-WOEK-AREA.
122 PERFORM 0210-OLD-WET TREU 0210-EXIT.
123 READ OLD-ET? AT END 0O TO 01S0-E03.
124 GO TO 0170-NEW-EOF.
125 0180-COJ.
126 CLOSE OLD-ETi NEW-ETF PRNTE.
127 STOP RUN.
12e 0200-NW-WRT.
129 MOVE LINZl TO N-LN1.
130 MOVE LIUE2 TO N-LU?.
131 MOVE LINE3 TO N-LN3.I
122 WRITE PENT-LINE PROM NEW-LN-i AFTER ADVANCING 2.
133 WRITE PRUT-LINE FROM NEW-LU-2 AFTER ADVANCING 1.
134 WRITE PENT-LINE PROM NEW-LU-3 AFTER ADVANCING 1.
135 0200-EXIT.
136 EXIT.
137 0220-OLD-WET.
138 MOVE LINEI TO LNI.
139 MOVE LINE? TO LU?.
140 MOVE LINE3 TO L03.
141 WRITE PENT-LINE FROM WS-LN-l AFTER ADVANCING 2.
142 WRITE PENT-LINE FROM WS-LN-2 AFTER ADVANCING 1.
143 WRITE PENT-LINE FROM WS-LN-3 AFTER ADVANCING 1.
144 0210-EXIT.
14S EXIT.

),Yet
A teot COSe for this program to a pair of Input files. In CMS.1

those may be created outside the system and roferoeed by name, of Say be
entered 6on the fly'.

WHERE IS OWD-BT?

WHERE is NEI?
)Oc6
OLD-IT? PROVIDED TO THE PROGRAM

I1?345678901 2111111it hIOJJJJJJJIKKKXKKKKLLLLLLLLLUINNUnWWI33SBSOGG
J234 567 90 12 3YYYYYYY VYGGGOOGGO F? 1?FFrrODDDDDDDDDSSSSSSuIXXXXXXXXXEIEEE

NEW-IT? PROVIDED TO TNE PROGRA



112

S11334567690120000000000000000000000000000000000000000000000000000000000000000
J234SA5790123YYYYYYYYYYGGGGCGGGFFFFFPFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
34S678901234UUUUUUUUUUHNNHHHHHHHHGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAA

PRNTR AS WRITTEN BY THE PROGRAM

0 12234S67890121IZlIIII1OJJJJJJ
L JJJXKKKXKKKKLLLLLLLLLLNNNNNNN
D NNNSSBBBBSBGGGOGG

N Ii?34S676901 OOOOOOOOOOOOOOOOO
E 000000000000000000000000000000
W 00000000000000000000

0 J23457990123YYYYYYYYYYGGCGGG
L ccGFFFFFFFFODDDDDODDDSSSSSSS
D SSSXXXXXXXXXXEEEEE3

N J234567890123YYYYYYYYYYGGGGGG
£ GGGFFFFFFPFFFDDDDDDDDDDSSSSSSS
W SSSXXXXXXXXXXEEEEEEE

N 34579901234UUUUUUUUUURHHR
£ HHGGGGGGCGGGDDDDDDDDDDSSSSSSS
W SSSEEEEEEEEEEAAAAAAA

THE PROGRAM TOOK 34 STEPS
IS THIS TEST CASE ACCEPTABLE ? )yes
DO YOU WANT TO SUBMIT A TEST CASE ? )no
MUTATION PHASE
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? >)2e0et

ENTER THE NURBERS OF TUE MUTANT TYPES YOU WANT TO TURN ON AT THIS TIME.

4 * I' INSERT FILLER TYPE 00o0
5 **00 FILLER SIZE ALTERATION TPE 00*0

6 **" ELEMENTARY ITEM REVERSAL TYPE 0000
7 ***' FILE REFERENCE ALTERATION TYPE *'*
a 0000 STATEHENT DELETION TYPE 0'
10 0000 PERFORM -- ) GO TO TYPE 0000
11 000* THEN - ELSE REVERSAL TYPE **00
12 *** STOP STATEMENT SU9STITUTION TYPE **
13 THRU CLAUSE EXTENSION TYPE ****
14 0000 TRAP STATEMENT REPLACEMENT TYPE ****
19 M*0* MOVE REVERSAL TYPE 0000
20 0000 LOGICAL OPERATOR REPLACEMENT TYPE 0000
21 0000 SCALAR FOR SCALAR REPLACEMENT ****
22 0000 CONSTANT FOR CONSTANT REPLACEMENT 0**0

23 0000 CONSTANT FOR SCALAR REPLACEMENT 00
2S 0000 CONSTANT ADJUSTMENT 00t0

TYPES ? >4 to 14 stOp
--- TESTCASE I --

250
264 CONSIDERED 224 KILLED 60 REMAIN

MUTANT STATUS

TYPE TOTAL LIVE PC? EQUIV r
INSERT 41 7 82.93 0
FILLSZ 33 14 63.26 0
IT MRV 21 0 200.00 0
FILES 5 1 00.00 0
DCLETE 54 13 75.93 0

so

+w:p
+ " ... + +'+ +'++d. .. ..+++ ' l+,* - - " ,+.. .



113

PER GO 7 2 71.43 0
IF REV 3 1 66.67 0
STOP 53 10 83.13 0
THRU 9 2 75.00 0
TRAP S4 10 e1.4e 0

TOTALS
284 60 78.87 0

DO YOU WANT TO SEE THE LIVE MUTANTS?)no
0O YOU WANT TO SEE THE EQUIVALENT MtiTANTS?>no
WOULD YOU LIKE TO SEE THE TEST CASES?),no
LOOP ON HALT ? >loop
PAZ-RUN PHASE
DO YOU WANT TO SUBMIT A TEST CASE ? >y@U
WHERE IS OLD-ET?

3.1e1s
* WHERE IS NEW-E?

>lc5
*OLD-ET? PROVIDED TO THE PROGRAM

0000000000012111 IIIIIJJJJJJJJJKKKKKKKKLXLLLLLLLLLNNNNNNNNNNBBSBBBBCGGC
11234567e901 21! IrIIIJ3JJJJJJJJKKKXKXKI!LLLLLLLLLLNNNUMNZ4NNNBBBBBBBBBGCGGGG
32345678901 23YYYYYYYYYYGGGGGGGGGGIFVVVVPIFFDDDDDDDSSSSSSSSSSXXXXXXXYXXEEEEE

NEW-ETF PROVIDED TO THE PROGRAM

1123455i7890121z1 i!IIIJJJJJJJJKKKXKKKKKLLLLLLLLLLNNNNNNNNNBDBBBBBUBBBGGGGG
32 34 56789012 3YYYYYYYYYYGGGCGGGGFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

PRNTR AS WRITTEN BY THE PROGRAM

0 00000000000121111TIZIIZJJJJJJJ
L JJJKKKKKKKKKLLLLLLLLLLUNNNNN
D NNN38BBSSBBBSGCCGGG

THE PROGRAM TOOK 44 STEPS
IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
WHERE IS OLD-ET?

WHERE IS NEW-ETY?

OLD-ETF PROVIDED TO THE PROGRAM

rl2345678901211111III11KJJJJJ3JjjKKIKKKKKKLLLLLLLLLLNNNNWNNWNBSS3USS300GCG

NEW-ETF PROVIDED TO TUE PROGRAM

I 12345678901211 III! IIIJJJJJJJKUKKKLLLLLLLLLLYNNNNNNIUBSBBBCBGGGGG
.7234 54?8901 23TYYYYYTTOOOGGGGOGOC??"FlVFVDDFDDDDDDDDSSSSSSSSSXXXXXXXXXEEEEE

Pitn AS WRITTEN BY THE PROGRAM

0 11234547990221111111111XJJJJJJ
L JJJKKKXXKKXXLLLLLLLLLLNNMW
D MNNBBBBBSBBSGOGGCGOG

N 1223456789012111?III13333333j
9 JJJKKKKRKLLLLLLLLLNNI
W N1UBBBBBBBSGCGGG

4 TYE PROGRAM TOOK 43 STEPS



114L

IS THIS TEST CASE ACCEPTABLE ? *pyes
DO YOU WANT TO SUBMIT A TEST CASE ? )yes

WHERE IS OLD-ETF?
>lcl

WHERE IS NEW-STV?
>lcl

OLD-Eli PROVIDED TO THE PROGRAM4

0000000000000000000000000000000000000000000o

NEW-Eli PROVIDED TO THE PROGRAM

X123d56789O1211111113JJJKIKKKKKLLLLLLLNLNNtNNNNNBBBBB3BBGGGGGO
3234 567890123YYYYYYYYYYGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
34 S6789O1234UUUUUUUUUHHHHHHHHHGGGGGGGGCGDDDDDDDDDDSSSSSSSSSEEEEEESEA AAAA

PRNTR AS WRITTEN BY THE PROGRAM4

0 000OO0O000000000000000000000000
L 00000000000000

N 12345678901211111IIIII3JJJJJ
E JJJKKKXKKKKKKLLLLLLLLLLNNNNNN
W NNNBSBBBBBD8GCGGGG

N J234567090123YYYYYYYYYYGGGGGGG
E GGGFFFFFFFIOFDDDDDDDDDSSSSSSS
W SSSXXXXXXXXXXEEEEE

N 345678901234UUUUUUUUUUHHHHHHH
E HHHGGGGGGGCDDDDDDDDDDSSSSSSS
W SSSEEEEEEEEEAAAAAAA

THE PROGRAM TOOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE 7 >Yes
DO YOU WANT TO SUBMIT A TEST CASE ? >yes

WHERE IS OLD-ElIP?
>1ci

WHERE IS NEW-Eli?
>lcll
OLD-EliP PROVIDED TO THE PROGRAM

11234567890121IIII I IIJJJJJJ3JJKKXKRKIKKKLLLLLLLLLLNNNNNNNNNDBBBBBBBBCOOCOGI' 3J2345678901 23YYYYYYYYYYGGGGGGGCGO?FP1FFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
34 5670901234UUUUUUUUUUHHHHHHHHHGGGCGGGGGGDODDDDODDDSSSSSSSSSSEEEEEAAAAA

NEW-ETF PROVIDED TO THE PROGRAM

coOoooooooOooo ooooo00OOO0000000oo~oO

PRUTR AS WRITTEN BY THE PROGRAM

v 000000000000000000000000000000
E 00000000000000

0 11234S67890121IIIIItIIIJ3JJJJJJ
L JJRRKKKXXKXXXLLLLLLLLLLNNNNWN
o NNNBBBSOBBBBOGGGGG

* 0 J2345676901 23YYYYYYYYYYGGGGCGjL GOGPUrrfrFFOVPDODOODODDSSSSSS



115

O SSSXXXXXXXXXXEEEEEEE

O 345478901234UUUUUUUUUUNUHNHHH
L HUHGGCGGGGGGGDDDDODDDDOSSSSSSS
D SSSEEEEEEEEEEAAAAAAA

THE PROGRAM TOOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >no
MUTATION PHASE
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? >all

TESTCASE I ---
230
S00
750
814 CONSIDERED 640 KILLED 174 REMAIN

--- TESTCASE 2 ---
234 CONSIDERED 82 KILLED 152 REMAIN

--- TESTCASE 3 ---
152 CONSIDERED 1 KILLED 151 REMAIN

--- TESTCASE 4 ---
151 CONSIDERED 61 KILLED 90 REMAIN

--- TESTCASE 5 ---
90 CONSIDERED 69 KILLED 21 REMAIN

MUTANT STATUS

TYPE TOTAL LIVE PCT EOUIV
INSERT 41 3 92.68 0
FILLSZ 38 12 68.42 0
ITEMRV 21 0 100.00 0
FILES 5 0 100.00 0
DELETE 54 1 99.15 0
PER GO 7 0 100.00 0
IF REV 3 0 100.00 0
STOP 53 0 100.00 0
THRU 0 0 100.00 0
TRAP 54 0 100.00 0
MOVE R 13 0 100.00 0
LOGIC 1s 1 93.33 0
SUBSFS 704 4 99.43 0
SUSCVC 12 0 100.00 0
suscrs 58 0 100.00 0
C ADJ 12 0 100.00 0

' ' TOTALSOTAYLU 1098 21 98.09 0

DO YOU WANT TO SEE THE LIVE NUTANTS7byes
THE LIVE MUTANTS

FOR EACH MUTANT : HIT RETURN TO CONTINUE. TYPE *STOPO TO STOP.
TYPE 'EOUIV* TO JUDGE THE MUTANT IOUIVALENT.

S*O** INSERT FILLER TYPE *"'0

THERE ARE 3 MUTANTS OF T3IS TYPE LEFT.
DO YOU WANT TO 5SE THE?)yeS
A FILLER OF LENGTH ONE HAS SEEN INiERTED APTER
THE ITE WHICH START ON LINE 52
ITS LEVEL NUMBER IS 3

A FILLER Of LENGTH ONE HAS EEN INSERTED AFTER
4 THE ITEM WHICH STARTS ON LINZ 53

$ P°

M - --- ,,--- -_.



116

ITS LEVEL NUME1R IS 3

A FILLER OF LENGTH ONE HAS BE INSERTED AFTER
THE ITEM WHICH STARTS ON LINK 69
ITS LEVEL NUMBER IS 3

FILLER SIZE ALTERATION TYPE *ere

THERE ARE 12 MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THlXM?)y$s
THE FILLER ON LINE 58 HAS HAD ITS SIZE DECREMENTED BY ONE.

THE FILLER ON LINE 58 HAS HAD ITS SIZE INCREMENTED BY ONE.

THE FILLER ON LINE 43 HAS HAD ITS SIZE DECREMENTED BY ONE.

THE FILLER ON LINE 63 HAS HAD ITS SIZE INCRENENTED BY ONE.

THE FILLER ON LINE 6 HAS HAD ITS SIZE DECREMENTED BY ONE.

THE FILLER ON LINZ ge HAS HAD ITS Srze INCREMERTED BY ONE.

THE FILLER ON LINE 73 HAS HAD ITS SIZE DECREMENTED BY ONE.

THE FILLER ON LINE 73 HAS HAD ITS SIZE DNCREMENTED BY ONE..

THE FILLER ON LINE 73 HAS HAD ITS SIZE INCREMENTED 9V ONE..

THE FILLER ON LINE 77 HAS HAD ITS SIZE DECREMENTED BY ONE.

./ THE FI[LLER ON LINE 7" HAS HAD ITS SIZE INCRIEMENTED BY ONE.

THE FILLER ON LINE 81 HAS HAD ITS SIZE DECRENENTED BY ONE.

STHE FILLER ON LINE 31 HAS HAD ITS SIZE INCREMENTED BY ONE.

**** OISTATM PET DELIOE TTYPE **'

THERE ARE 1 MUTANTS Of THIS TYPE LEFT.li DO YOU WANT TO $92 TlVlM?),te8

, O09 LINE 106 TXC STATINIENT
00 TO 01SO-,¢-AIDO-DItL

HAS BEEN DZLL'TZD.

i **** LOGI[CAL OPERATOMt RCPLACCPMIT TVPE **

TH- A OF "IFT. LET



117

DO YOU WANT? TO SKI9 ?3ZN7)yes
Oil LINZ 102 T32 STATEMENTS

if OLD-Sty )o 3KW-Kt
HAS BEEN CRAVGED TO:

if 0WD-KIT NOT C 33W-KS?

SCALAR FOR SCALAR REPLACEMENT *

THERE ARE 4 MUTANTS Of TUIS TYPE LEFT.
DO YOU WANT TO SZE THZN?>y.3
ON LINE 129 THE STATEMENT:

MOVE 1.1311 TO N-L~l
HAS SEEN CHANGED TOt

MOVE NEW-USC TO M-1.31

ON LINZ 129 THE STATEMENT:
MOVE LI9 TO N-WVI

HAS SEEN CHANGED TO:
MOVE PRUT-WORN-ARRA TO N-LU!

ON LINE 138 THE STATEMENT:
MOVE LINEI TO LII2

HAS BEEN CHANGED TO:
MOVE OLD-REC TO LN1

ON LINE 138 THE STATEMENT:
MOVE LINI TO LVll

HAS SEEN CHANGED TO:
MOVE PUNT-WOUK-ARSA TO LNl

DO YOU WANT TO SEE THE EQUIVALENT MUTANTS?)no
WOULD YOU LIRE TO SEE THE TEST CASES?)ono
LOOP OR HALT ? >halt

***STOP

J

'il



118

L]4
APP~NDIX D

Li
n

An FMS.1 Script on a C!4S.1 ~4oduXe

4

LI

ii
LI

Li
I,

I

~

~I I'

.1 '4e~-



119

MUTATION ON MUTATION

This is a report of an experience in using the program mutation
methodology on a production software module, namely, a subroutine in another
mutation system. The subject subroutine is NXTLIV from the Cobol pilot mutation
system (CNS.l) being developed by the author at Georgia Tech. Since CM5.1 is
written in Fortran, NXTLZV was run on the pilot mutation system for Fortran
( FMS.l) which was developed at Yale University and later transferred to Georgia
Tech.

Previous experiments of this kind have taken a routine believed to
be correct, and performing mutation analysis on it to (1) increase confidence in
the module's correctness, and (2) demonstrate that first order mutation analysis
is feasible for real programs. The current study differs primarily in that the
routine was known to contain at least one error. The error had resisted the
usual debugging techniques (selective trace, etc.) Bance 1S.1 vas being used
in this instance not as a test data evaluator, but as a tool for systematic
debugging, and, perhaps just as Importantly, as a convenient test bed for a
subroutine extracted from its normal environment.

The routine NXTLIV takes as input the identifying number of a mutant
of-a given type, and returns the number of the next live mutant, as indicated by
bit maps of the live mutants. The bit maps are in general too large to fit in
an internal array, so they are Opaged* from a random access disk file as needed.
Similar maps are kept of the dead mutants and the mutants judged to be
equivalent.

The original programs

SUBROUTINE NXTLZV(MTYPE, MUTNO)
C FIND THE NEXT LIVE MUTANT AFTER THE NUTNOth Of TYPE MTYPI
C RETURN THIS VALUE IN RUTNO.
C A VALUE OF ZERO RETURNED MEANS NO MUTANTS Or THAT TYPE REMAIN ALIVE

KOLZST
$INSERT ICSOS7)CPHS. COMPAR>SYSTEM. PAR
SINSERT XCSOS7>CPMS.C MPAR>RJ4ACNINL.SXZES.PAR
SINSERT ICS0S7>CPMS.COMPAR>FILENM.CON
SINSERT 1CS057>CPMS.COMPAR>TSTDAT.CON
$INSERT ICS0S7)CPS.COMPAR>NSBUF.CON

LIST
INTEGER MTYPEMUTNO
INTEGER 1,J,K,L,WORD,SIT
LOGICAL ERR

C CALL TRERI(33)
C ASSUME THAT THE RECORD CONTAINING THE LVE AIT APS FOR
C NUTNO is ALREADY PRSZENT• UNLESS NUTNRO .i, K-BPWoI
C CHECK TO SEXL I WE ARE AT THE ND OR A PHY STCAL R 13ORD

517UN.2 0)GOI
3!?NO0(RUTUO,*NR)~ Z.0 T 24t ~~~Wr (ROD(NUTO,)/es(3).UFR.l as

FL.EGOTO 10
I CALRAARAN (MSFILZ,•LIVBUF • SIPR8, LZVP,ZRR}

1r(9RR)CALL ABORT(' (NXTLIV) ERROR IN MUTANT STATUS. IL21*36)
~~CALL Rr.ARAN(NSIPIL2, COUIBUrASTS, soQup"# 9RR1

IF(9RR)CALL ABORT(O(MXTLIV) ERROR IN MUTANT #TATUS FILE't3f)

iCALL R.ARA9.(PS IL DtDSU, #MSDtDPT )
It(ER)CALL ABORT('-(HXTLV) 9RRON IN MUTANT STATUS ,IL2*#36)

J, CHANGD*. rALS S.
,. WORDO 1

i 005'0 20
~~10 WORDeXOD((PUTNO) / (I) ,R5)+|

S ZTWOOIRUTO,K) +2
~20 DO 22 J=,MORD, NSPFN

:, L,'LIliUIJ)1rLNo)O02



120

MUTNOuMUTNO+K
It(MUTNO.GT.NCT)GOTO 40

GOTO 22
23 DO 21 IuSITqBPW

MUTNONUTNO 1
rr(MUTNO.GT.MCT)GOT 40
IF(AND(L,2*(BIW-I)).NE.0)GOTO 30

21 CONTINUE
s IT- 2

22 CINTINUE
24 IF(.NOT.CNANGD)GOTO 25
C SAVE OLD RECORDS

CALL WRTRAN(MSrZLE, LZVDUFeSrRS, LIVPT'R ERR)
CALL WRTRAN (MSFI LE. IQUBUFMSFRS. EQUPTR. ERR)
CALL WRTRAN(MSFZLE.UDEDBUFMSFRS,DIDPTRERR)

C NEED TO GET NEXT RECORDS
25 LIVPTRwLIVPTR+NSIRS

EQUPTR-EQUPTR+MSFRS
DEDPTR-DEDPTR+NSFRS
GOTO 1I

30 GOTO 9999
40 MUTNO-0

I?( .NO.CHANGD)GOTO 9999C SAVE OLD RECORDS

CALL WRTRAN(MSFILELIVUNSFRS,LIVP"R. ERR)
CALL WRTRAN(MSFILE.EQUBUF.NSFRS.EQUPTR, ERR)
CALL WRTRAN(MSFZLZ.DEDBU?.MSFRS.DEDPTR, ERR)

9999 CONTINUE
C CALL TIMER2

RETURN
END

FMS.1 accepts a limited subset of Fortran, and thus the program
could not be tested directly as It came from C43.1.

(1) PARAMETER statements are not accepted, so the parameters
BPW (bits per word), MSFRS (mutant status file record size)
which come from the SINSERT blocks were systematically
replaced by convenient constants, 4 and 4.

.( (2) CALL statements are not supported. The random I/O routines
are simulated by arrays to be read from and written to.
The two TIMER routines are not essential and can be ignored. ;

(3) The functions MOD and AND are not available and had to be
simulated.

(4) Type LOGICAL is not available and had to be simulated by
INTEGER.

The modified programs

SUBROUTINE NXTLIV(MUTNO,.CTLIVIUV.NLBSLLSCRANGD)
C FIND Till NEXT LIVE MUTANT AMTR T112 MUTNOth OF TYPE MTYP2I
C RETURN THIS VALUE IN MUTNO.
C A VALUE OF ERO RETURNED MEANS NO NUTANTS OP THAT TYPE REMAIN ALIVE

INTEGER MUTNOTlMP
INTEGER IJ.LrVORDv&IT
INTEGER NCT.LIVSUF(4) * LLI(4) .NLD(4) *CLAMD

C ASSUME THAT THE RECORD CONTAINING THE LIVE SIT MAPS FOR
C NUTNO IS ALREADY PRESENT, UNLESS MUTNOMO
C CHECK TO SEE It WE ARE AT THE END OP A PIYSICAL RECORD

IF(NUT"O.O.0)GOTO I
CCCC Ir(MODfMUTIIOB*MSFRS) 0. 0)GOT0O 24. :I F( (NUTRO/I 2) *12. 0.MUTPO) G0a 24

GOTO 10
I DO III I - 1,411 LIVBUF(I)nNL5(I)

[-V

7 t1



T_

121

CCCCI CALL RZARANSPZLZ.*LZVSUF.NSFRS. LZWTR.ERR)I
CCCe !1P(ERR)CALL ABORT(O(NXTtIV) ERROR IN MUTANT STATUS FILE' .36)
CCCC CALL RZARAN(NSFPILE. EQUSUjF.NSFrRS.EQOUFTR.eRRt)
CCCC ZP(ERR)CALL ABORT1(XXTLIV) ERROR in MUTANT STATUS FILE' *36)
CCCC CALL REARAN(NSFPILR.ooDDSUFNSFRS.DEDPTR.ERR)
CCCC I(CRR)CALL ABORT(O(NXTLIV) ERROR IN MUTANT STATUS FILE' .36)
CCCIC ClIANGDo.*FALSE.

CUANODmO
WORD-i
511.2
COTO 20

CCCC1O WORD.MODUM"UTvO)/(K) .MSFRS)+1
10 VORD-UM1UTNO/3)-IU(MUTNO/3)/4)) + 1
CCCC BIT.MOD(HUTNO#K)+2

BITfMUTKO-3*(NUTNO/3) + 2
20 DO 22 J3WORD,4

L-LIVBUIF(J
IF(L.NE.O)GOTO 23
NUTNOmMUTWO4 3
IFCMUTNO.GT.MC?)GOTO 40I COTO 22

23 DO 21 I-BTT,4
MUTND-NUTNO+1
Z?(MUTNO.G?.MCT)OO 40

CCCC I17(AND(L,2*(BW-I)) .NE.0)GOTO 30
TZMPL/(2-(4-I))
IF(TEMP.NE.(TZMP/2)-2) COTO 30

21 CONTINUE
9I?-?

22 CONTINUE
CCCC24 171 .NOT.CRANGD)GOTO 25
24 !F(CHANGD.EQ.0)GOTO 25
C SAVC OLD RECORDS
CCcC CALL WRTRAN(M4SFILZ. LIVDUF.MSFRS. LIVPTR. ERR)
CCCC CALL WRTRAN(MSFLZQURUMSFRSEOIJPTR.ERR)
CCCC CALL WRTRAN(NSrILE.DEDSUr,MSFRS.DEDPTR. ERR)

DO 241 1.1.41
241 LLS(I)LIVIUM()
CNEED TO GET NEXT RECORDS

fCCCC25 LIVPR.L!VPTR+MSFRS
CCCC EQUPTR=EQUPTR4'NSFRS
CCCC DEDPTRaOEDPYR+NgFRS
CCCC COTO I
25 COTO I
30 COT1O 9999
40 NUTNOO0

S CCCC 1Ff .NOT.CIAVGD)OO 9999
!F(CIIANGO.tO.O) COTO 9999

C SAVE OLD RECORDS
CCCC CALL WR RAN(NSFILE.LIVDUr.NSRS.LZVPTR. ERR)
CCCC CALL WRTRAU(NSrILE'3QURUrMSrRSEOUPTfl.ERR)
CCCC CALL WRtTRAN(PSFlIDEDDUI.MSFRS.DDFR.ERR)

DO 291 1*4
291 LLS(I)uLIVSUF(Z)
9999 CONTINUE

RETURN
CHO

A trace of the Initial YM6.1 run on this roeutine appears below#
with cementary In lover case.

PRz-RUN PMASE



122 i

ALL INPUT MUST BE IN UPPEt CASE
ENTER THE RAW PROGRAM FILE MARE

NXTLIV
DO YOU WANT TO PURGE WORKING FILXS
FOR A FRESH START?
TYPE A YES OR NO 0000

YES
CATEGORIZE FORMAL PARAMETER MUTWO
To
CATEGORIZE FORMAL PARAmETER MCT
INCATEGORIZE FORMAL PARItER LIVBUr

CATEGORIZE FORMAL PARAMETER LVU5

10

~CATEGORIZE FORMAL PARAMETER 31.J5
~~IN
i ~CATEGOR I ZE FORMAL PARAME~t LWJ
• 10

CATEGORIZE FORMAL PARAMETER CEANGD
10
1S MUTANT CORRECTNESS DEPENDENT ON A PREDICATE SUBROUTINE?
TYPE A YES OR NO * I

NO
HOW MANY TEST CASES ARE TO 5E SPECIPZED?

I
SPECIFY TEST CASE 1
ENTER VALUES FOR
MUTNO .MCT ICRANGD,

040

a value of 100 for mutno on Input means that this Is a new mutant type, and a
nov record is required. MCT is the total number of mutants of the current type.

ENTER 4 VALUES FOR ARRAY LIVBUF
77 00
ENTER 4 VALUES FOR ARRAY PLO

0000

NLB is the next live buffer. In this case Is should be transferred to LIVNUF
for use immediately.

ENTER 4 VALUES FOR ARRAY LLD.o0000 -
' ~~ 0UN -0TEST CASE NUMBER I

PARAM4ETERS ON INPUT
MUTNO s 0

a minor bug In the Georgia Tech version of FMS.2 prevent$ the input on the first
testcase from being echoed. [
M l UTNO - 0
LIVUF 1 )- 0
LIVBUF 2)- 0
LIVSUF C 3)- 0
LIVBUF ( 4) 0
LLD 1)- 0
LLD ( 2) 0
LLD C 3)0 0
LLD 0 )

CHANGD *0
THE RAW PROGRAM TOOK 41 STEPS TO EXECUTE TEIS TEST CASE

I1 HIT RETURN TO CONTINUE
mutno-O on output mens that the end of the live mutant map for this type has

4 ibeen reached.

. Pw
_ _ _ _ _ _I



123

PLEASE VERIFY THAT DATA is CORRECT
TYPE A YES OR NO e*"

YES
WHAT NEW TYPES OF MUTANTS ARE TO Be CONSIDERED ?

PAN

this stands for Opath analysis*. The mutant operator replaces statements with a
<trap) statement which always causes the mutant to fail if the statement is
executed.

WHAT NEW TYPES OF MUTANTS ARE TO BE CONSIDERED ?
NONE

MUTATION PHASE
POST RUN PHASE"

NUMBER OF TEST CASES * 1 NUMBER O MUTANTS - 44
NUMBER OF LIVE MUTANTS - 23 PC? Of ELIMINATED MUTANTS - 47.73

MUTANT TYPES AND .LIVE MUTANTS PROFILES
TYPE MUT LIVE* TYPE NUT LIVE* TYPE RUT LIVE' TYPE NUT LIVE*
PAN 44 23*

MUTANT ELIMINATION METHOD PROFILE
METHOD COUNT* METHOD COUNT' MRT OD COUNT METHOD COUNT*
TIMED-OUT 0* REF UNDVAR 0' SUBSCR RUG 0* ZERO DIV 0*
ARTH FAULT 0* RDONLY VAR 0* TRAP STNT. 21* WRONG ANS 0*
EQUIV 0*
POST RUN RESULTS

MUTANTS
MUTANT NUMBER 2

16 IFf(UTNO/12)*12.EO.MUTNO)GOTO 24
STATEMENT HAS BEEN CHANGED TO

16 TRAP
HIT RETURN TO CONTINUE, TYPE STOP TO FINISH
TYPE EQUIV TO KILL MUTANT

MUTANT NUMBER 3
17 GOTO 10

STATEMENT HAS BEEN CHANGED TO

17 TRAP
HIT RETURN TO CONTINUE, TYPE STOP TO FINISH
TYPE EQUXV TO KILL MUTANT

MUTANT NUMBER 10

32 10 WORDa((UTO/3)-4"((MUTBO/3)/4)) 1
STATEMENT HAS D1UN CNANGED TO

32 10 TRAP
NIT RETURN TO CONTINUE, TYPE. STOP TO FINISH
TYPE QUIV TO KILL MUTANT

SMUTANT NUMBER 21

34 BIT-PUTNO-3*(NUTO/3) + 2
STATEMENT HAS BEEN CHANGID TO

34 TRAP
SIT RETURN TO CONTINUE, TYPE STOP TO FINISH
TYPE EQUIV TO KILL MUTANT
STOP

TYPE NEXT COMMAND
LOOP

PR3-RUN PHASE
SAVING OUTPUT FILE ON BAROUT



124

I:
HIT RETURN TO CONTINUE

HOW MANY NEW TEST CASES FOR THIS RUN?

SPECIFY TEST CASE 2
ENTER VALUES FOR
NUTNO ,MCT .CHANGD.
ENTER 4 VALUES FOR ARRAY LIVBUF i.

77 00
ENTER 4 VALUES FOR ARRAY NLB
ENTER 4 VALUES FOR ARRAY LLB

0000
TEST CASE NUMBER 2
PARAMETERS ON INPUT
MUTNO a I
NCT a 6
LIVBUF 1)- 7
LXVBUF ( 2)- 7
LIVUF 3) - 0
LIVBUF C 4)- 0
NLH 1)- 0
NLS 2)- 0
NLS ( 3j- 0
NLD C 4)" 0
LLD ( 1)- 0
LLB C 2)- 0
LLD C 3)- 0
HIT RETURN TO CONTINUE

LLD 4)w 0
CHANGD , 0
PARAMETERS ON OUTPUT
MUTNO - 2
LIVBU" C 1)- 7
LIVBUF C 2)- 7
LIVBUF C 3)- 0
LIVBUF 4)- 0
LLB C 1)- 0
LLB C 2)- 0
LLB [ 3)- 0LLS (4)-, 0[
CHANGD ,,0TlE RAN PROGRA 0 TOOK 16 STEPS TO EXECUTE THIS TEST CASE

HIT RETURN TO CONTINUE I
PLEASE VERIFY THAT DATA IS CORRECT
TYPE A YES OR NO *

YES
NAT NEW TYPES OF MUTANTS ARE TO BE CONSIDERED ?

NONE
REVIEW PREVIOUS RUN RESULTS

GO
MUTATION PHASE
POST RUN PHASE

NUMBER OF TEST CASES * 2 NUMBER Of MUTANTS - 44
NUMBER OF LIVE MUTANTS - I PCT OF ELIMINATED MUTANTS 7 75.00

MUTANT TYPES AND LIVE MUTANTS PROFILES F
TYPE NUT LIVE* TYPE NUT LIVE* TYPE MUT LIVE* TYPE NrUT LIVE*PAN 44 11°

MUTANT ELIMINATION METHOD PROFILE

4 v
* .F I



T--,

125

METHOD COUN'* METHOD COUNT' METHOD COUNT* METHOD COUNT'*
TINED-OUT 0* REF UNDVAR 0" SUBSCR RS 0* ZERO DIV 0*
ARTU FAULT 0* RDONLY VAR 0* TRAP STHT 33* WRONG AilS 0*
oUlIV 0*

POST RUN RESULTS
LOOP
PRE-RUN PHASE
SAVING OUTPUT FILE ON BAKOUT
NIT RETURN TO CONTINUE

MOW MANY NEW TEST CASES FOR THIS RUN?

SPECIFY TEST CASE 3
ENTER VALUES FOR
MUTNO ,NCT *CHANGDL,

10 20 1
ENTER 4 VALUES FOR ARRAY LIVDUF
1300
ENTER 4 VALUES FOR ARRAY NiL
7700
ENTER 4 VALUES FOR ARRAY LLr

99 99 99 99
TEST CASE NUMBER 3
PARAMETERS ON INPUT
MUTNO w 10
MCT a 20
LIVBUF C 1)- I
LIVBUF 1 2)- 3
LIVIUF ( 3)- 0
LIVBUF ( 4)- 0
NML 1)• 7
HLB ( 2)s 7
NLB ( 3)- 0
NiL ( 4)0 0
LLB ( 1)- 99
LLS ( 2)w 99
LLD ( 3) - 99
MIT RETURN TO CONTINUE

LLD 4)0 99
CHANGD " 1

* PARAMETERS ON OUTPUT
M MUTNO s 14
LIVBUF s) 7
LIVBUF C 2)- 7
LIVSUF C 3)- 0
LIVBUF ( 4)- 0
LLB C 1)* 1
Li 1 2)n 3
LLD (3)= 0
LLD (4)0 0
CRAMGD 0

ATHE RAW PROGRAM TOOK 56 STEPS TO EXECUTE THIS TEST CASE
BIT RRAN TO CONTINUE

An error has been detected. The correct output for MUTWiO Is 13 instead of 14.
' " The error resulted from choosing a starting point in the middle of a word of
*zero bits. NXTLIV ordinarily loops through the bits of each word looking for

the next 1 bit, but as an efficiency measure, a whole word Is compared to Zero
before entering the loop. If all bits are off# HTNO is incremented by the word
length, and the next word Is accessed. The Correct algorithm would incrementMUTNO only by the number of bits left to be examined In the word. The only way
this could make a difference In the original program is for NXTLIV to be called

k
I,



.126

In such a way as to stop at a 010 bit in the middle of the word, and then have
the system turn off the bit by reason of mutant failure of equivalence (outside
NXTLIV), and then have NXTLIV called again for the next mutant to be considered.
This situation Is rare enough to frustrate haphazard debugging attempts, but
common enough to cause irritation in a production-sized run.

The correction is to replace
MUTNO u MUTNO * 3
(MUTNO - MUTNO * K in the original)
by
NUTNO - MUTNO * (3-(SIT-2))
(MUTNO - MUTNO * (K-(BIT-2)) in the original).

After correcting this error, the program was re-entered to FMS.1 and
the testing cycle started over.

OK, SEG RUN>PIMS
PRE-RUN PHASE

ALL INPUT MUST BE IN UPPER CASE
ENTER THE RAW PROGRAM FILE NAME

~NXTLIV
DO YOU WANT TO PURGE WORKING FILESFOR A FRESH START?

TYPE A YES OR NO *'
YES
CATEGORIZE FORMAL PARAMETER MUTNO10

etc.

HOW MANY TEST CASES ARE TO BE SPECIFIED?

SPECIFY TEST CASE I
ENTER VALUES FOR
MUTNO ,MCT ICHANGD,
S51

and so fourth. Test cases were entered and executed correctly until all of the
path analysis mutants were eliminated.

POST RUN PHASE
NUMBER OF TEST CASES 9 S NUMBER OF MUTANTS - 44
NUMBER OF LIVE MUTANTS a 0 PCT OF ELIMINATED MUTANTS a 100.00
MUTANT TYPES AND LIVE MUTANTS PROFILES

TYPE MUT LIVE* TYPE NUT LIVE* TYPE NUT LIVE* TYPE NUT LIVE'
PAN 44 0'

I MUTANT ELIMINATION METHOD PROFILE
METHOD COUNT* METHOD COUNT' METHOD COUNT* METHOD COUNT*
TIMED-OUT 0* REF UNDVAR 0' SUSSCR RZO zERO DIV 0'
ARTN FAULT 0* RDONLY VAR 0' TRAP STNT 44* WRONG ANS 0'
EQUIV 0*

There is no claim made that this number of test cases is an any way minimal.
Some killed only one mutant. Jj
POST RUN RESULTS

LOOP
PRE-RUN PHASE

SAVING OUTPUT FILE ON BAKOUT
HIT RETURN TO CONTINUE

NOW MANT NEW TEST CASES FOR T"IS RUN?
WHAT NEW TYPES OF MUTANTS ARE TO BE CONSIDERED ?

SELECT

'L .4' -



12Z7

FOR EACH CHOICE, TYPES YES. No OR FINISH
ARRAY LIMIT DEFAULT MNTION *

YES

NO 2-DI1 ARtRAY LIMIT PERMUTATION *

CONSTANT REPLACEMENT
YES

SCALAR VARIABLE REPLACEMENT
NO

SCALAR VAR FOR CONSTANT REPLIST*

NO

NO
2-DINU ARRAY E NADE RPRMTE

NO
SCALAR VAR FOR AA RNERtOMT

NO

ARITHMETIC OPERATOR REPLACENNT *
YES

RELATIONAL OPERATOR REPLACZMNrr *
YES

LOGZCAL CONNECTOR REPLACEMENT *
NO

ARITHMETIXC PRECEDENCE PERMUTE &
NO

No LOGICAL PRECEDENCE PERMUTATION *

YE OTO LABEL RZPLACEM4ENT

CONTINUE STATEMENT INSERTION
No

CONTINUE STATEMENT DELETIONf No
No INNER DO-LOOP DECOUPLING7; NO DO-LOOP INDEX ALTERATION

RETURN STATEMENT MNTION
THESE 14UTANT TYPES WERE ALREADY ON:PAR
WHAT? NEW TYPES OF MUTANTS AREt TO 9E CONSIDERED ?

REVIEW PREVOUS RUM RESULTS
Go

;~~Ns~ NUMBER OF0IV MUTANTS C FRIIA2 MUTANTS 9.7

MUTANT TYPES AND LIVE MUTANTS PROF ILE$TYPE NUT LIVE' TYPE NUTIZ TYPE NUT LIVE' TYPE MU? LIVE'ALD 3 0O*CAR 14 0* SFA 63 O' AOR 84 2*4 pop 40 10' 01.3 10S 9' PAN 44 0' RW 4) 4*



128 i

MUTANT ELIMINATION METHOD PROFILE
METHOD COUNT* METHOD COUN' METHOD COUNT* METHOD COUNT*
TIMED-OUT 310 REF UNDVAR 160 SUBSCR RG 19' ZERO DIV S*
ARTH FAULT 0* RDONLY VAR 0' TRAP STMT 440 WRONG ANS 259'
EQUIV 0*
POST RUN RESULTS

HALT

later...

09, SEC RUN>)PTMS
PRE-RUN PHASE
ALL INPUT M4UST BE IN UPPER CASE
ENTER THE RAW PROGRAM FILE NME

NXTLIV
DO YOU WANT TO PURGE WORKING FILES

FOR A FRESH START?
TYPE A YES OR NO ""NO

i ! after enteringJ several test €sea the situaonor wasl as shown:

MUTATION PHASE
POST RUN PHASE

NUMBER OF TEST CASES , 11 NUMBER OF MUTANTS - 399
NUMBER OF LIVE MUTANTS * 9 PCT OF ELIMINATED MUTANTS * 97.74

MUTANT TYPES AND LIVE MUTANTS PROFILES
TYPE NUT LIVE* TYPE NUT LIVE* TYPE NUT LIVE* TYPE MUT LIVE*
ALD 3 0* CAR 14 0' SPA 63 0' AOR 84 0'

ROR 40 1' GLR 108 7* PAN 44 0* RSR 43 1*

MUTANT ELIMINATION METHOD PROFILE
METHOD COUNT* METHOD COUNT' METHOD COUNT' METHOD COUNT*
TIMED-OUT !1I REF UNDVAR 16* SUBSCR RNG 20* ZERO DIV 5'

ARTH FAULT 0* RDONLY VAR 0' TRAP STMT 44* WRONG ANS 262*
EQUIV 12*
POST RUN RESULTS

LOOP
PRE-RUN PHASE

SAVING OUTPUT FILE ON BAKOUT
HIT RETURN TO CONTINUE

It was decided to leave those nine alone, and consider all mutants. Including
the multitude of substitutlio mutants.

ROW MANY NEW TEST CASES FOR THIS RUN?

2WHAT NEW TYPES OF MUTANTS ARE TO BE CONSIDERED ? H
ALL

THESE MUTANT TYPES WERE ALREADY Ogs

ALD CRP CAR SPA AOR ROR GLR PAN CIA RSA

GREVIEW PREVIOUS RUN RESULTSGo
V MUTATION PHASE"

POST RUN PHASE
S NUMBER OF TEST CASES m 11 NUMER OF MUTANTS * 1514

NUMBER Or LIVE MUTANTS * SO PCT OP ELIMINATED MUTANTS - 96.70

, 1 MUTANT TYPES AND LIVE MUTANTS PROFILES
7 TYPE MUT LIVE* TYPE MUT LIVE* TYPE MUT LIVE* TYPE MUT LIVE*
1 ALD 3 0* SVP 366 14 SpC 306 12' CFS 180 6*

CAR 14 0' CPA 24 O SrA 63 0* AFC 104 1*

A1



129

AFS 128 4" AOR 84 0* ROR 40 1* GLR 108 7*
PAN 44 0* CS1 3 3* CSD 2 1* RSR 43 1*

MUTANT ELIMINATION METHOD PROFILE
METHOD COUNT* METHOD COUNT* METHOD COUWT METHOD COUNT*
TIMED-OUT 45* REF UNDVAR 481' SUBSCR RNG 96* ZERO DIV 25"
ARTH FAULT 0* ROONLY VAR 0* TRAP 5TMT 44 WRONG ANS 7S9*
ECUIV 12"
POST RUN RESULTS

A cycle of (1) look at a few live mutants
(2) generate test data to kill those mutants
(3) execute mutants on teat data
(4) look at more mutants

wasn followed several times until the mutant was encountered

*MUTANT NUMBER 689

45 BIT*2
STATEMENT HAS BEEN CHANGED TO

45 :I 2

The following data was entered to try to eliminate this mutant. It
Involved starting In the middle of a word, and having to go into the next word
to find the next on bit.

SPECIFY TEST CASE 1s
ENTER VALUES FOR
NUTNO ,MCT *CHANGD,

5 20 0
ENTER 4 VALUES FOR ARRAY LI'JBUP
0010
ENTER 4 VALUES FOR ARRAY NL7

1111
ENTER 4 VALUES FOR ARRAY LLS

9,9 9 99
TEST CASE NUMBER is

" PARAMETERS ON INPUT
MUTNO - 5
MCT - 20SLIVIUF C 1)- 0

j LIVBUF C 2)- 0
LIVBUF ( 3)w 1
LIVBUF 4)- 0
NLB C 1)- 1
NLB 1 2)e 1
NLB C 3)- 1
NLB C 4)- 1
LLS ( 1). 99
LLD 1 2)a 991. ~LLB 3)w 99
HIT RETURN TO CONTINUE
LLA I 4)0 99

i! CHARGO 0
PARAMETERS ON OUTPUT

MUTNO a 7
LIVUP 1) 0
LIVBUF 1 2)- 0

*LIVUUF 13)o 1
LIVRUF C 4- 0
LLB ( 1)- 99

j[



130 Ii

LLB ( 2)e 99
LLB ( 3)- 99
LLB 4)N 99
CHANGD - 0

THE RAW PROGRAM TOOK 23 STEPS TO EXECUTE THIS TST CASE
HIT RETURN TO CONTINUE

PLEASE VERIFY THAT DATA IS CORRECT
TYPE A YES OR NO *
SILL
ABORTING RUN

"e STOP 77777

The answer is wrong. Another error In the program has been found. Again it is
related to the test for an entire word of zeros. If we start in the middle of aword of zeros, the BIT pointer Is not being reset to 2 to begin searching thenext word. The correction that is needed is to replace

BIT-2

22 CONTINUE

by

22 BIT-2

It is interesting to note that another mutant further down In the list does
exactly that -- remove the continue statement at the end of a DO loop and put
the label on the next-to-last statement. The error was discovered before it
absolutely had to be, but it would have been discovered eventually in any case.

OK, SEG RUN>PIMS
PRE-RUN PHASE
ALL INPUT MUST BE IN UPPER CASE
ENTER THE RAW PROGRAM FILE NAME

NXTLIV
DO YOU WANT TO PURGE WORKING FILES
FOR A FRESH START?
TYPE A YES OR NO *0

YCATEGORIZE FORMAL PARAMETER MUTNO10

CATEGORIZE FORMAL PARAMETER MCT
IN
CATEGORIZE FORMAL PARAMETER LIVBUF
10
CATEGORIZE FORMAL PARAMETER Ni
IN
CATEGORIZE FORMAL PARAMETER LLDtoI

* tCATEGORIZE FORM4AL PARAMETER CRANOD1 1 MUTANT CORRECTNESS DEPENDENT ON A PREDICATE SUBROUTINE?

STYPE A YES OR NO
NO
HOW MANY TEST CASES ARE TO BE SPECIIZED?

is
SPECIFY TEST CASE 1
ENTER VALUES FOR
MUTNO MCT CHANGV,

* i FILE TESTNXT

SAMI.



131

The is test cases already generated were run against all mutants on the latest
version of the program. These test cases bad been saved on a file rather than
entered by hand during the run.

MUTATION PHASE
POST RUM PHASE

NUMBER O TEST CASES 1 MBUSER OP MUTANTS , ISSO
NUMBER Of LIVE MUTANTS - 52 PCT OF ELIMINATED MUTANTS u 96.71

MUTANT TYPES AND LIVE MUTANTS PROFILES
TYPE NUT LIVE* TYPE NUT LIVE* TYPE NUT LIVE* TYPE NUT LIV!*
AWD 3 0* CRP Go S* SVR 368 4* SFC 306 10'
CpS 10 6* CAR 14 0' CPA 24 0* SPA 63 0'
Arc 104 0* AS 128 2* AOR 64 0* RON 40 at
GLR 108 9* PAN 43 0* 3SI 4 3* CSD 1 I*
5S 42 4*

MUTANT ELIMINATION METHOD PROFILE
METHOD COUNT* METHOD COUNT* METHOD COUNT' METHOD COUNT*
TIMED-OUT 47* REP UNDVAR 483* SUBSCR RUG 111' ZERO DIV 26'
ARTH FAULT 0* ROONLY VAR 0* TRAP STINT 43' WRONG AN& 610
EQUIV 0*
POST RUN RESULTS

The cycle of killing a few mutants at a time was entered again, and some mutants
were judged to be equivalent along the way. one principal source of equivalent
mutants was the troublesome test for a ward of zeros. Its only purpose is to
save the effort of looking through the word bit by bit. If the condition in the
test is replace by any condition that is identically .TRUt.v the program runs a
bit longer sometines, but gets the same result. An example of this is:

MUTANT NUMBER 813

34 IF(L.NE.0)GOTO 23
STATEMENT HAS BEEN CHANGED TO

34 IF( 12.UE.0) GOTO 23

Another source of equivalent mutants Is the occurrence of extra labels. ror
example It Is easy to see that COTO 25 can always be replaced with GOTO 1. At
some statements in the program a variable is guaranteed to have a particular
value. This generates equivalent mutants such as

MUTANT NUBES 694

2 00 241 1-3,4
STATEMENT HAS BEEN CANGED TO

52 DO 241 ICIWJIGD,4

In all, 37 mutants were judged to be equivalent, and the rest ware eliminated by
test cases on which the program performed correctly.

One equivalent outant actually turned out to be an iiprovament
(albeit a slight one) on the original program.

MUTANT UMBER 1362

36 IP(MUTO.GT.MCT)O 40
STATEMENT HAS SEEN CHANGED TO

*36 1F( MUrrNO.GICMC?) 0010 40

i~

Ii _ __ _ V



132

MUTANT STATUS AMTER TiS RU
NUMBER Of TEST CASES * 24 NUDER OF MUTANTS - 1560
NUMBER o LIVE MUTANTS * 0 PCT OF ELINATED MUTANTS * 100.00

MUTANT TYPES AND LIVE MUTANTS PROFILES
TYPE NUT LIV* TYPE NUT LIVE'* TYPE NUT LIVE' TYPE NUT LIVE'
ALD 3 0* CRP so 0* S 348 0* SFC 306 0*
CS 160 0* CAR 14 0* CYA 24 0* SPA 63 0'
ArC 104 0* ArS 129 0* AOR 64 0* ROR 40 0'
GUL 108 0* PAN 43 0* CSI 4 06 CSD 1 0*
RSR 42 0'

MUTANT ELIMINATION METHOD PROFILE
METHOD COUNT* METHOD COUNT* M9TUOD COUNT' METHOD COUNT*
TIMED-OUT Si* REF UNDVAR 483' SUBSCR RNH 113' ZERO DIV 26'
ARTH FAULT 0* RDONLY VAR 0' TRAP STNT 43' WRONG ANS 327*
EQUIV 37*
POST RUN RESULTS
HALT

Previous experience has never found a program that has posses mutant analysis
that still contained an error. The current program will be a good test of the
generality of that experiences since this routine is expected to continue in
service for same time. It should be noted that not all of the original routine
has been tested by mutation, and no claims are made for the untested portions.
out if mutation i valid, the central logic of the routine should now be
correct.

i

.ii

I

,ivi
. . .- -



133

APPENDIX E

Statistical Background



134

STATISTICAL BACKGROUND

Analysis of Variance

in many experimental settings, several factors are

th~ought to have some possible relationsh~ip to a response

variable wh~ich. can be treasured. Generally a linear m~odel is I
used.T

Xs E + aA + bB +..

Where X = the measured response variable

A = a controlled factor

a - an unknown constant

B = another factor

b = B's constant

etc.

and E = an "error" term.; a random variable for variation

not accounted for by any of th-e controlled factors. Some of

4 the factors being considered may be interactions of other

4 factors.

i f'



LSDO

Aalysis of variance is a test of each of the

hypotheses:

awO, bO,.

Suppose A is controlled to take on just two values, say 0

and 1, and we want to test the hypothesis a-O (i.e. A has

no effect). Let SO be the average value of X for all

observations with A-O, and St be the average for A-i.

Because of the uncontrolled random variation E, we would not

expect SO to be equal to S1, even if A had no real effect on

K. What we need to do is first estimate the variation due

to E, and compare ISO-SiI to the difference we would thus

expect from pure error. We can estimate the variation of E

by making more than one observation of X at each combination

of values of the controlled variables. These multiple

observations are called replicates. If we assure that the

error term is normally distributed, ther. we car,. use the

tabled values of the F-distribution to decide whether or not

] a difference between SO and S1 is large enough that it is

unlikely that it is the result of pure chance. Extensions

to more complicated cases are not difficult. Suppose, for

example, that B is controlled to ten values (say

S,1,2,...,9). Let Ti be the average of the observations

wi:th a-i. Then we measure the variation possibly due to 3

by the sample variance of the Ti's, by a sum-of-squares

computation. compare that variation to the variation

from E. Itfh variation among the Ti's is much larger than



136

that predicted from pure error, then we conclude that B has

a significant effect. Again we use values of the

F-distribution to determine the decision criteria. T.e

significance level of the decision criterion is the

probability of concluding that the effect is significant, if

indeed it is not. An excellent discussion of analysis of

variance, along with all necessary computational formulas

and tables, may be found in (23], or any other good handbook

of experimetal statistics.

I

I'I'

I ,)

,!F

L - - m ,. . .. ... ..



137

Confidence Intervals

In experimental statistics we often know the type of

distribution from which we are sampling, but we want to

determine some of its controlling parameters. For example,

we often know (or assume) that we have a normal (Gaussian)

distribution, but do not know its mean or variance. We then

have a two-parameter famiy, and we wish to establish the

parameters. For simplicity, consider a one-parameter family

f(p). We sa-mple from f by making several observations of

objects in the distribution, and estimate p from the

observations. The mathematical form of the estimate depends

on the form of the family. If f were a class of normal

distributions all with variance-I, and p were the t.ean, then

the best estimate of p would be the arithmetic mean of the

observations. If f were the class of uniform distributions

on the interval [p,1), then a good estimate for p would be

the minimum observation. In any case, once we have the
*estimate, we like to ask ourselves how accurate the estimate

is. The question Is often answered with a confidence

interval. If we sample from f and estimate pop, we like to

v, also say Othere is a q5% probability that pO < p < pl",

where pO and pl are also computed from the observations.
'I
j The interpretation of this statement is important. p is not

a random variable; either it is in the interval or it is

not. The random variables are p0 and pl. A more accurate

.: statement would be "experimental. procedure S produced the

P 1;'



138

interval [pO,pl], and there is a 95% probability that S will

produce an interval containing the true value ot p'.

The family of distributions underlying the coupling

experiments is the binomial distribution. -

n! k n-k
P (k) ------- p (1-p)

p k! n-k)!

if k is an integer between 0 and n

P (k)0 otherwise.
p

3ere n is the sample size, k is .the number of successes in

the sample, and p is the probability of success on any one

observation. ("Success" here can mean anything we want.)

In our experiments, n is on the order of 10,000 to 50,000,

and p is the fraction of all complex errors of a given type

that would not be equivalent or eliminated by the test data

provided, and k is the number of complex errors in the

sample that are not equivalent or eliminated.

Let pO be the value (found by iteration) such that

" .' k-1

i P(i) 0.q75
. L=O

Then

k-i k-i
*P(PO<p) *P( Z P Ci) P L ( i))

1=0 pO i=O p
14 i

" ... . . . . . . -- .. ,.- .. .,. 'O, .... , a ,.,-. . ; ,. 4J. ;. ... ... . - .. . -- I' _ i.... I



139

ku

iluO p

Where ku is th-a largest integer such that

ku-i
p (1) < 0.475

i=0 p

So P(pO < p) I 0.9)75. ay an analogous argum~ent, P(pi > p) >

0.975. Our 95% confidence interval is thus [pO,P1].

41

VAV



140

APPENDIX F

Program Listings

t

I

It

, I " ,mm- D--- - .-. . .... .- _



141

PROGRAM 1

I IDENTIFICATION DIVISION.
2 PROGRAM-ID. POQAACA.
3 AUTHOR. CPT R W MOREHEAD.
4 INSTALLATION. HOS USACSC.
5 DATE-WRITTEN. OCT 1973.
6 REMARKS.
7 THIS PROGRAM PRINTS OUT A LIST OF CHANGES IN THE ETF.
8 ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE
9 OLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO
10 FURTHER PROCESSING O THE ETF HERE. THE ONLY OUTPUT IS A
11 LISTING OF THE ADDS# CHANGES, AND DELETES. THIS PROGRAM IS
12 FOR HQ USE ONLY AND HAS NO APPLICATION IN THE FIELD.
13
14 MODIFIED FOR TESTING UNDER CPHS BY ALLEN ACREE
1s JULY, 1979.
16 ENVIRONMENT DIVISION.
17 CONFIGURATION SECTION.
18 SOURCE-COMPUTER. PRIME.
19 OBJECT-COMPUTER. PRIME.
20 INPUT-OUTPUT SECTION.
21 FILE-CONTROL.
22 SELECT OLD-ETF ASSIGN INPUT4.
23 SELECT NEW-ETF ASSIGN INPUTS.
24 SELECT PRNTR ASSIGN TO OUTPUT9.
25 DATA DIVISION.
26 FILE SECTION.
27 FD OLD-ETF
28 RECORD CONTAINS 80 CHARACTERS
29 LABEL RECORDS ARE STANDARD
30 DATA RECORD IS OLD-REC.
32 01 OLD-REC.
32 03 FILLER PIC X.
33 03 OLD-KEY PIC X(12).
34 03 FILLER PIC X(47).
35 FD NEW-ETF
36 RECORD CONTAINS 80 CHARACTERS

. 37 LABEL RECORDS ARE STANDARD

38 DATA RECORD IS NEW-REC.
39 02 NEW-REC.
40 03 FILLER PIC X.
41 03 NEW-KEY PiC X(12).
42 03 FILLER PIC X(67).
43 FD PRNTR
44 RECORD CONTAINS 40 CHARACTERS
45 LABEL RECORDS ARE OMITTED
46 DATA RECORD IS PRT-LINE.
47 01 PRNT-LINE PiC X(40).
49 WORING-STORAGE SECTION.
49 01 PRNT-WORK-AREA.
50 03 LINEl PIC X(30).
51 03 LIN82 PIC X(30).
52 03 LINE3 PIC X(20).
S3 01 PRUT-OUT-OLD.
54 03 IS-LN-I.
55 0S FILLER PIC X VALUE SPACE.
56 05 FILLER PIC XXXX VALUE '0
57 OS LN1 PiC X(30).
s8 05 FILLER PIC XXX VALUE SPACES.

li59 03 WS-LN-2.
. 60 05 FILLER PIC X VALUE SPACE.

61 05 FILLER PIC XXX VALUE L .



142

2 OS LN2 PIC X130).
63 05 FILLER PIC XXX VALUE SPACES.
64 03 WS-LN-3.
65 05 FILLER PIC X VALUE SPACE.
66 05 FILLER PIC XXXX VALUE ID
67 05 LN3 PIC X(20).
68 05 FILLER PIC XXX VALUE SPACE.
69 02 PRNT-N EW-OUT.
70 03 NEW-LN-1.
71 05 FILLER PICXXXXX VALUE N '.

72 05 N-/ j PIC X(30).
73 05 FILLER PIC XXX VALUE SPACE.
74 03 NEW-LN- 2.

75 05 FILLER PIC XXXXX VALUE I E
76 05 N-LN2 PlC X(30).
77 0S FILLER PIC XXX VALUE SPACES.
78 03 NEW-LN-3.
79 05 FILLER PIC XXXXX VALUE * W
80 05 N-LN3 PIC X(20).
81 05 FILLER PIC XXX VALUE SPACES.
82 PROCEDURE DIVISION.
83 0100-OPENS.
84 OPEN INPUT OLD-ETF NEW-ETT.
85 OPEN OUTPUT PRNTR.
86 0110-OLD-READ.
87 READ OLD-ETF AT END GO TO O160-OLD-EOF.
88 0120-NEW-READ.
89 READ NEW-ETF AT END GO TO 0170-NEW-EO?.

90 0130-COMPARES.
91 IF OLD-KEY a NEW-KEY
92 NEXT SENTENCE
93 ELSE GO TO 0140-CK-ADD-DEL.
94 IF OLD-REC I NEW-REC
95 GO TO 0110-OLD-READ.
96 MOVE OLD-REC TO PRNT-WORK-AREA.
97 PERFORM 0210-OLD-WRT THRU 0210-EXIT.
98 MOVE NEW-REC TO PRNT-WORK-AREA.
99 PERFORM 0200-NW-WRT THRU 0200-EXIT.
100 GO TO 0110-OLD-READ.
101 0140-CK-ADD-DEL.

102 IF OLD-KEY > NEW-KEY U -
103 MOVE NEW-REC TO PRNT-WORK-AREA
104 PERFORM 0200-NW-WRT THRU 0200-EXIT

114 GO TO 0120-NEW-RAD

106 ELSE GO TO 0150-CO-ADD-D0L. [1
107 0150-CX-ADD-DEL.
108O MOVE OLD-SEC TO PRNT-WORK-ARtAs
109 PERFORM 0210-OLD-WRT TURU 0210-EXIT.
110 READ OLD-ITF AT END
11 MOV1 NEW-REC TO PRNT-WORK-ARIA.112 PERFORM 0200-NW-WRT TURU 0200-EXIT
113 GO TO 0160-OLD-EO?.
114 00 TO 0130-COMPARES.

~1~,11S 0160-OLD-EOF. [
116 READ NEW-IT? AT EMD 00 TO 0180-30J.
117 MOVE NEW-REC TO PRNT-WORK-ARRA.
11e PERFORM4 0200-#W-WiT? THU 0200-EXIT.

120 0170-4EW-COF.
121 MOVE OLD-SEC TO PRNrT-WORK-ARE..

122 PERFORM4 0210-OLD-WRT TRU 0210-EXIT.
123 READ OLD-ITF AT END GO TO 0180-,o .
124 GO TO 0170-RWI-9OF.
125 0180-90J.

___ [



143

126 CLOSE OLD-ETF NEW-IT? PI TR.
127 STOP RUN.
128 0200-NW-WRT.
129 MOVE LINE1 TO N-LNI.
130 MOVE LINE2 TO N-LH2.
131 MOVE LINE3 TO N-LN3.
132 WRITE PRNT-LIHE FROM NEW-LN-l AFTER ADVANCING 2.
133 WRITE PRUT-LINE FROM NEW-LN-2 AFTER ADVANCING 1.
134 WRITE PRNT-LIVE FROM NEW-LN-3 AFTER ADVANCING 1.
135 0200-EXIT.
136 EXIT.

137 0210-OLD-WRT.
138 MOVE LINE1 TO Lti.
139 MOVE LINE2 TO LN2.

140 MOVE LINE3 TO L343.141 WRITE PRNT-LINZ FROM WS-LN-1 AFTER ADVANCING 2.
L 142 WRITE PRNT-LINE FROM WS-LN/-2 AFTER ADVANCING 2.

143 WRITE PRNT-LINZ FROM WS-LY-3 AFTER ADVANCING 1.
144 0210-EXIT.

145 EXIT.
146

$ i

4.

, .A



144 L

PROGRAM 2

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID.
3 PROG-1.
4 AUTHOR.
5 JAMES L. BINGHAM.
6 DATE-WRITTEN.
7 APRIL 14t 1979.
8

9 ENVIRONMENT DIVISION.
10 CONFIGURATION SECTION.
11 SOURCE-COMPUTER. PRIME.
12 OBJECT-COMPUTER. PRIME.
13 INPUT-OUTPUT SECTION.
14 FILE-CONTROL.
15 SELECT IN-TRANSACTION ASSIGN TO INPUTO.
16 SELECT OUTPUT-PAYMENT ASSIGN TO OUTPUTO.
17
18 DATA DIVISION.

19 FILE SECTION.
20
21 FD IN-TRANSACTION
22 RECORD CONTAINS 18 CHARACTERS,
23 LABEL RECORDS ARE OMITTED,
24 DATA RECORD IS TRANSACTION-RECORD,
25 01 TRANSACTION-RECORD.
26 05 ACCT-NUM PIC 9(8).
27 05 BILLED-ANT PIC 9(5)V99.
28 05 PERCENTAGE PlC V99.
29 05 ACCT-CLASS PIC X.
30
31 FD OUTPUT-PAYMENT
32 RECORD CONTAINS 55 CHARACTERS,
33 LABEL RECORDS ARE OMITTED,
34 DATA RECORD IS OUTPUT-RECORD.
35 01 OUTPUT-RECORD PIC X(55).
36
37 WORKING-STORAGE SECTION.

.: 38
39 01 W-TOTALS-OUTPUT-RECORD.
40 05 FILLER PIC X(4) VLUE SPACES.

41 05 NAME-OF-CLASS PIC X(34).
42 05 TOTAL-CLASS-PAY PIC SSSSSS9.99.
43 05 FILLER PlC X(4) VALUE SPACES.
44
45 01 W-OUTPUT-RECORD.

46 05 FILLER PIC XIX VALUE SPACES.
47 0S W-ACCT-NUN PIC 9(S).
40 05 FILLER PIC xxx VALUE SPACES.
49 05 W-BILLED-ANT PIC 9(51.99.
so 05 FILLER PIC m= VALUE SPACES.

Sl 0S W-PERCENTAGE PIC .99.
52 05 FILLER PIC XnX VALUE SPACES.
S3 05 W-ACCT-CLASS PIC X.

54 05 FILLER PIC Xfx VALUE SPACES.
55 05 W-PAYMENT PIC $SS$S9.99.
56
St 01 TDIPORARY-ITEM.[
s 05 TOTAL-A-PAY PIC 9(6)V99.
59 05 TOTAL-X-PAY PIC 9(6)V99.
60 0S TOTAL--PAY PiC 9(6)V99.

If 61 05 TOTAL-T-,, PlC ,,,,)V,9.

. *.

- V-n---..



i2

145

62 0S TOTAL-I-PAY PiC 9(6)V99.
63 05 PAY-ANT-A PIC 9(S)V99.
64 OS PAY-ANT-X PiC 9(S)V99.
65 05 PAY-AMT-N PiC 9(s)V99.
66 05 PAY-ANT-T PIC 9(S)V99.
67 0S PAY-ANT-Z PlC 9(s)v99.
68
69 01 ERROR-MESSAGE,

70 05 INVALID-DATA-RECORD PIC X(So)
71 VALUE 'INVALID DATA ON THIS CARD'.
72
73 01 ,LAG-VALUE.
7T4 0 EORE-DATA-RE1AINS PIC x VALUE O AI
75 P88 NO-MORE-DATA-REMAINS VALUE N,*76
77 PROCEDURE DIVISION.
78 PROCESS-TRANSACTION.

79 OPEN INPUT IN-TRANSACTION
80 OUTPUT OUTPUT-PAYMqENT.

81 MOVE ZEROES TO TOTAL-A-PAY, TOTAL-X-PAY* TOTAL-M-PAY,
8 2 TOTAL-T-PAY, TOTAL-Z-PAY*

83 READ IN-TRANSACTION
84 AT END MOVE IN* TO MORP.-DATA-REMAINS.
es PERFORM CH/ECK-DATA UNTIrL MORt-DATA-REH4AIWS -'*
86 P ERFORMq WR ITE- OUTPUT-TOTALS.
87 CLOSE IN-TRANSACTION

88 OUTPUT-PAYMENT.
89 STOP RUN.
90
91 CHECK-DATA.

92 IF ACCT-NUM IS NUM4ERIC
93 AND DrLLED-AMT IS NUMERTC
94 AND PERCENTAGE 1S NUMERIC
95 AND (ACCT-CLASS- *A* OR
95 ACCT-CLASS a X OR
97 ACCT-CLASS I 'N' OR
98 ACCT-CLASS a 'T' OR
99 ACCT-CLASS - 'Z')
100 PERFORM PROCESS-ONE-TRANSACTION
101 ELSE
102 WRITE OUTPUT-RECORD FROM ERROR-MESSAGE.
103 READ IN-TRANSACTION
104 AT END MOVE I' TO MOPE-DATA-REMAINS.
105

106 PROCESS-ONE-TRANSACTION.
107 MOVE ACCT-NUN TO W-ACCT-NUM.
log MOVE BILLED-AMT TO W-BILLED-AJT.
109 MOVE PERCENTAGE TO W-PERCtNTAGE.
110 MOVE ACCT-CLASS TO W-ACCT-CLABS.
111

112 IF ACCT-CLASS - "A* OR ACCT-CLASS a X'I
113 COMPUTE PERCENTAGE a 1.00 - PERCINTAGE
114 IF ACCT-CLASS a 'A'
lS MULTIPLY BILLID-AT BY PERCENTAGE
116 GIVING PAY-ANT-A ROUNDED
117 ADD PAY-ANT-A TO TOTAL-A-PAY
118 MOVE PAY-ANT-A TO W-PAYXINT
119 ELSE
120 MULTIPLY BILLED-AMT BY PERCENTAGE
121 GIVING PAT-ANT-x ROUNDED
122 ADD PAT-ANT-x TO TOTAL-X-PAT
123 MOVE PA-ANT-X TO W-PAYMENT.
124
12S If ACCT-CLASS O N'

' 1 2

r °d"



146

126 MULTIPLY BILLED-ANT BY PERCENTAGE
127 GIVING PAY-ANT-N ROUNDED
128 ADD PAY-ANT-M TO TOTAL-N-PAY
129 NOVE PAY-ANT-N TO W-PAYMENT.
130
131 IF ACCT-CLASS a IT'
132 MOVE BILLED-ANT TO PAY-AT-T
133 ADD PAY-AMT-? TO TOTAL-T-PAY
134 MOVE PAY-AMT-T TO W-PAYMENT.
135
136 IF ACCT-CLASS -*ZO
137 MOVE BILLED-ANT TO PAY-AT-Z
138 ADD PAY-AT-2 TO TOTAL-Z-PAY
139 MOVE PAY-AT-Z TO V-PAYMENT.
140
141 WRITE OUTPUT-RECORD FROM W-OUTPUT-RECORD.
142
143 WRITE-OUTPUT-TOTALS.
144 MOVE TOTAL-A-PAY TO TOTAL-CLASS-PAY.
145 MOVE * TOTAL AMOUNT FOR CLASS A: 8 TO NAME-O-CLASS.
146 WRITE OUTPUT-RECORD FROM W-TOTALS-OUTPUT-RECORD.
147
148 MOVE TOTAL-X-PAY TO TOTAL-CLASS-PAY.

149 MOVE I TOTAL AMOUNT FOR CLASS X: I TO AME-OF-CLASS.
IS0 WRITE OUTPUT-RECORD FROM W-TOTALS-OUTPUT-RECORD.
151
152 MOVE TOTAL-M-PAY TO TOTAL-CLASS-PAY.
153 MOVE ' TOTAL AMOUNT FOR CLASS N: I TO MANE-OF-CLASS.
154 WRITE OUTPUT-RECORD FROM W-TOTALS-OUTPUT-RECORD.
155
156 MOVE TOTAL-T-PAY TO TOTAL-CLASS-PAY.
157 MOVE ' TOTAL AMOUNT FOR CLASS T: ' TO NAME-OF-CLASS.
158 WRITE OUTPUT-RECORD FROM W-TOTALS-OUTPUT-RECORD.
159
160 MOVE TOTAL-Z-PAY TO TOTAL-CLASS-PAY.
161 MOVE * TOTAL AMOUNT FOR CLASS Z I TO NAME-OF-CLASS.
162 WRITE OUTPUT-RECORD FROM W-TOTALS-OUTPUT-RECORD.
163

4

ii

• I

'i;" H
• ,------- - . ... 1



147

PROGRAM 3

3 ZDENTIFICATION DIVISION.
2 PROGRAM-ID. SAMPL-4.
3 REMARKS. ADAPTED FROM YOURDAY, ZT AL. *LEARNING TO PROGRAM
4 IN STRUCTURED COBOL.*
S ENVIRONMNIT DIVISION.
6 CONPIGURATION SECTION.
7 SOURCE-COMPUTER. PRIME.
8 OSJZCT-CO PUTER. PRIME.
9 INPUT-OUTPUT SECTION.
10 FIL-CONTROL.
11 SELECT APPLICATION-CARDS-FILE ASSIGN TO INPUTO.
12 SELECT PROFILE-LISTING ASSIGN TO OUTPUTO.
13
14 DATA DIVISION.
is FILE SECTION.
16
17 Vd APPLICATION-CARDS-?ILE
18 RECORD CONTAINS 60 CHARACTERS
19 LABEL RECORDS ARE OMITTED
20 DATA RECORD IS NAME-ADDRESS-A)ID-PRONE-IN.
21 01 NAME-ADDRESS-AND-PROE-IN.
22 05 NAME-IN PIC X(20).
23 05 ADDRESS-IN PIC X(40)4
24 0S PHONE-IN PIC X(ll).
25 05 FILLER PlC X(3).
26 05 ACCT-NUM-IN1 PIC 9(6).
27
28 FD PROFILE-LISTING
29 RECORD CONTAINS 132 CHARACTERS
30 LABEL RECORDS ARE OMITTED
31 DATA RECORD 1S PRiNT-LNE-OUT.
32 01 PRINT-LINE-OUT PIC X(132).
33
34 WORKINC-STORACE SECTION.
35 01 COMMON-WS.
36 OS CARDS-LEFT Pic X(3).
37 01 CREDIT-INFORMATION-IN.
38 05 CARD-TYPE-IN PIC X.
39 05 ACCT-NUM-tN2 PIC 9(s).
40 OS FILLER PIC X.
41 0S CREDIT-INtO-IN PIC X(22).
42 0S FILLER Pic X(SO,.
43 01 APPLICATION-DATA-WS51.
44 0S NAME-AND-ADDRSS-WS.
45 10 NMEw-VS PlC X20).
46 10 ADDRUS-WS.
47 is STREET-WS PIC X(20).
46 Is CITY-WS PIC x(13).
49 15 STATE-VS PIC XX.
50 1s Zip-NS PIC x(s).
51 Os PRONE-VS.
52 10 AREA-CODE-WS PIC 9(3).
53 10 NUmNR-wS Pic %($$.
54 os FILLER Pic x(3).
55 os ACCT-NUN-VS plC 9(61.
S6 os CREOI?-IMrO-Wv.
$7 10 SeX-WS PIC X.
5 10 FILLER PIC X
59 10 NARITAL-STATUS-VS PIC X.
60 10 FILLER PIC X.
41 10 NUMIEI-DENS-VS PlC X.



1'48

62 10 FILLER PiC x.
63 10 !WCOME-HUNDRSDS-WS PIC 9(3).
64 10 FILLER PIC X.
65 10 YEARS-EMPLOYED-WS PIC 99.
66 10 FILLER PIC X.
67 10 OWN-OR-RENT-WS PIC Xe
66 10 FILLER PIC X.
69 10 MORTGAGE-OR-RENTAL-WS PIC 913).
70 10 FILLER PIC X.
71 10 OTHER-PAYMENTS-WS PIC 9(3).
72 01 DISCR-INCOME-CALC-fTELOS-WSC.
73 0S ANNUAL-INCOME-WS PIC 9(5).
74 OS ANNUAL-TAX-WS PIC 9(5).
75 05 TAX-RATE-WS PIC 9V99 VALUE 0.25.
76 0S MONTHS-IN-YEAR PiC 99 VALUE 22.
77 0S NONTHLY-NET-INCOME-W PIC 9(4).
78 05 MONTHLY-PAYMENTS-WS Pic 9(4).
79 0S OISCR-INCOM9-Ids PIC 59(3).•

8o
81 01 LINE-1-US93.
82 05 FILLER PIC X(5) VALUE SPACES.
83 05 NAME-LI PIC X(20).
84 0s FILLER PiC X(11)
85 VALUE * PRONE ('.
86 0S AREA-CODE-Li PIC 9(3).
87 0S FILLER PIC XX VALUE )
88 0S NUMIR-LI PIC X(8).
89 0S FILLER PIC X(3) VALUE SPACES.
90 05 SEX-Li PIC X(6).
91 0S FILLER PIC X(9) VALUE SPACES.
92 OS FILLER PlC X(14)
93 VALUE 'INCOME So.
94 05 INCOME-HUNDREDS-L1 PIC 9(3).
95 0S FILLER PIC X(28)
96 VALUE '00 PER YEARI IN THIS EMPLOY .
97 05 YEARS-EMPLOYED-LI.
98 10 YEARS-Li PIC XX.
99 10 DESCN-LI PIC X(145).
100 01 LINE-2-WSS3.
101 05 FILLER PIC XfS) VALUE SPACES.
102 05 STREET-L2 PIe X(20).
103 05 FILLER PIC X(27) VALUE SPACES.
104 0S MARITAL-STATUS-L2 PIC Xfs).
10S OS FILLER PIC X(7) VALUE SPACES.
106 0S OUTGO-0ESCN PiC X(16).
107 05 MORTCAGE-OR-RENTAL-L2 PIC 9(3).
108 05 FILLER Pic X(l1) [i
109 VALUE I PER NTl .
110 08 FILLER PIC X(22)
ill VALUE 'DISCRETIONARY INCO149 $0.
112 05 DISCR-INCOME-L2 PIC 9(3).
113 0s FILLER PIC X(t)1 114 VALUE ' PER NTH'
115 01 LINE-3-W513.
114 05 FILLER PIC 1) VALUE SPACES.
117 05 CITY-L3 PiC 1(13).
118 05 FILLER PIC X VALUE SPACE.
119 os STATe-L3 PIC xX.

, 120 05 FILLER PIC X VALUE SPACE.
121 OS ZIP-L3 Pic X(s).
122 05 FILLER PIC X(7) VALUE A/C ..
123 05 ACCT-NUM-L3 PIC 9().

. 124 0S FILLER PIC X(12) VALUE SPACES.
125 05 NUM3ER-DEPENS-L3 PIC 9.

4 ... . .. .I '-
.L i. .. .. f ..... . . ... . " : '



149

126 05 FILLER Pic X1 14)
127 VALUE 'DEPENDENTS

126 05 FILLER Pic X(161
129 VALUE @OTHER PAYMENTS S'4
130 05 OTHER-PAYIIENS-L3 PiC 903).
131
132 PROCEDURE DIVISION.
133 AO-NAIN-BODY.
134 PERFORM Al-INITIALIZATION.
135 PERFORM A2-PRINT-PROFILES
136 UNTIL CARDS-LEFT - 'NO
137 PERFORM A3-END-OV-J03.
138 STOP RUN.

140 Al-INITIALIZATION.
141 OPEN INPUT APPLICAION-CARDS-VILE
142 OUTPUT PROFILE-LISTING.
143 '*USELESS INITiALIZATIONS HAVE SEEN COMMENTED OUT
144 MOVE ZEROES TO ANNUAL-INCOME-VS.
145 *0 MOVE ZEROES TO ANNUAL-TAX-VS.
146 *"MOVE ZEROES TO MONTHLY-NET-INCOM&-WS.
147 ' MOVE ZEROES TO MONTULY-PAYIMENTS-VS.
148 " MOVE ZEROES TO DISCR-IMCOME-WS.
149 MOVE 'YES' TO CARDS-LEFT.
150 READ APPLICATION-CARDS-FILE
151 AT END MOVE 'NO I TO CARDS-LEFT.
152 *THE FIRST CARD OF A PAIR is mow IN THE BUFFER.
153
154 A2-PRINT-PROFILES.
155 PERFORM BI-GET-A-PA IR-OF-CARDS-rNTO-VS.
156 PERFORM 82-,CALC-DISCREtTN*Y-IWCOME.
157 PERFORM 83-ASSEMDLE-PRINT-LINES.
15$ PERFORM B4-WRITE-PROFILE.
159
160 A3-END-OF-J03.
161 CLOSE APPLICATION-CARDS-VPILE
162 PROPILE-LISTING.
163
164 31-GET-A-PA IR-OF-CARDS-INTO-WS.
165 MOVE NAME-IN TO NAME-VS.
166 MOVE ADDRtSS-ZN TO ADDRESS-VS.
167 MOVE PHONE-ZN TO PHONE-VS.
166 MOVE ACCT-NUM-IM1 TO ACCT-MUM-VS.
169 READ APPLICATION-CARDS-IILZ INTO CREDJIT-INFORMATION-IN
170 *' AT END MOVE 'NO 9 TO CARDS-LEFT.
171 AT END MOVE ' 00MISSING SECOND CARD OF PAIR '*
172 TO PRINT-LINE-OUT
173 WRITE PRIMT-LINE-OUT AFTER ADVANCING 2 LINES

174 PERFORM A3-99D-0oP-JOB
A77 MNUALRDI-TA-VS TO ANNU-INCM-S TZ-A'l-S



ISO.

190 NO MOSTLPAVMENTS-W
191 ON SIZE ERROR MOVE 999 TO DISCR-INCOME-VS.
192 * DISCRETIONARY INCOMES OVER $999 PER MOUTH ARE SET AT 8999.
193
194 33-ASSENBLZ-PRINT-LINZS*
195 MoVE NAmE-VS To NAMS-Li.
196 MOVE STREET-VS TO STREET-L2*
197 MOVE CITY-VS TO CITY-L3.
198 MOVE STATE-WI TO STATC-L3.
199 MOVE ZIP-VS TO ZIP-L3.
200 MOVE AREA-CODE-VS TO AREA-COD-LI.
201 MOVE NUMIR-US TO NUMR-Li.
202 move ACCT-NUM-WS TO ACCT-NUM-L3.
203 IT SEX-VS a IN' MOVE 'MALE I TO SEX-Li.
204 It SEX-VS - Of' MOVE *FEMALEI TO SEX-LI.
205 IF MARITAL-STATUS-VS a '5' MOVE *SINGLE
206 TO MAITAL-STATUS-L2.

*207 IF MARITAL-STATUS-VS a I' MOVE *MARRIED
208 TO MARITAL-STATUS-L2.
209 IF MARITAL-STATUS-VS - 'D$ MOVE 'DIVORCED'
210 TO MARITAL-STATUIS-L2.
211 If MARITAL-STATUS-VS a 'U' MOVE 'WIDOWED

212 TO MARITAL-STATUS-L2.
213 MOVE NUMBER-DEPENS-VS TO NUPBER-DEPENS-L3.
214 MOVE INCOME-HUNDREDS-VS TO INCOME-HUNDRDS-Li.
21S IF YEARS-EMPLOYED-US IS EQUAL TO 0
216 MOVE 'LESS THAN 1 YEAR' TO YEARS-EMPLOYED-LI
217 ELSE
218 MOVE YEARS-EMPLOYED-WS TO YEARS-Li
219 MOVE I YEARS I TO DESCH-Ll.
220 If OWN-OR-REN-US a O0' MOVE 'MORTGAGE: 8
221 TO OUTGO-OESCN.
222 IF OW-OR-RENT-VS a 'R' MOVE 'RENTAL: S
223 TO OUTGO-DESCN.
224 MOVE MORTGAGE-ORRENTAL-W5 TO MORTGAG-ORRENALL2o
225 MOVE OTHER-PAYMENTS-US TO OTHER-PAYMNTS-L3.
226 MOVE DISCR-INCOME-WS TO DtSCA-INCON-L2.
227
228 94-WRITE-PROFILE.
229 *' MOVE SPACES TO PRINT-LINE-OUT.
230 WRITE PRINT-LIME-OUT FRom LiNE--4s3i

234 AFTER ADVANCING A LINES.
2352 * MOVE SPACES TO PRINT-LINE-OUT.

236 WRITE PRINT-LINE-OUT FROM LINE-3-V53
237 AFTER ADVANCING I LINES.

238



15s1

PROGRAM 4

1 IDENTIFICATION DIVISION.
2 PROGRAM-tD. SlUqFREP.
3 AUTHOR. R A OVERIE.
4 REMARKS. THIS PROGRAM IS USED TO PRODUCE THE STATUS REPORTS
5 BY DEPARTMENT, FOR ALL OF THE STUDENTS RECORDED IN
6 THE SRMF.
7
8 ADAPTED TO THE CODCL MUTATION SYSTEM BY ALLEN ACREE.
9
10 ERRORS DISCOVERED:
11
12 (1) ERRORS IN THE INPUT FILE SETUP, CHECKED FOR
13 IN THE PROGRAM, CAUSE REFERENCES TO UNDEFINED24 DATA, PARTICULARLY LINZ-COUNT. CORRECTED WITH

is A VALUE CLAUSE.
16 ENVIRONMENT DIVISION.
17 CONFIGURATION SECTION,
1 SOURCECOMPUTER. CPS.
19 O533CT-COMPUTR. CHS.
20 SPECIAL-NAMES. C01 IS TOP-OF-PAGE.
21 INPUT-OUTPUT SECTION.
22 FILt-CONTROL.
23 SELECT MASTER ASSIGN TO INPUTO.
24 SELECT PRINT-FILE ASSIGN TO OUTPUTO.
25
26 DATA DIVISION.
27 FILE SECTION.
20 FD MASTC.I
29 RECORD CONTAINS 141 CHARACTERS,
30 LABEL REC.'ORDS ARE STANDARD,
31 DATA RECORD IS ITCM.
32 01 ITEM.
33 02 SOC-SEC-IN.
34 03 SOC-SEC-IN-1 PIC X(3).
35 03 SOC-SEC-IN-2 PlC X(2).
36 03 SOC-SEC-IN-3 PIC X(4).

37 02 NAME-IN PIC X(S).
38 02 ADDR-IN-1 PiC x(S).
39 02 ADDR-IN-2 PIC X(S).
40 02 MAJOR-It PIC X(4).
41 02 STATUS-IN PiC X(l) .
42 02 NO-COURSES PIC 99.
43 02 COURSE-ENTRY OCCURS 11 TIMES.
44 03 DEPT-OF? PIC X(2)6
4S 03 COURSE-NO PIC X12).
46 03 CREDITS PIC 99.
47 03 SEMESTR PC X(l).
43 03 TEAR PIC X(4).
49 03 GRADE PlC X(l)4
so PD PRINT-FILE
S1 RECORD CONTAINS 39 CSiARACTERS
52 LABEL RECORDS ARE OMITTED
53 DATA RECORD IS PRINT-BUFF.
54 01 PRINT-SUFF PlC Met9).

* , .55
5 WORKING-STORAGE SECTION.
57 77 END-ALL PIC 99.
5 77 END-MARKRR PIC 99.
59 77 P-INDEX PIC 9.
41 77 O-INTS PIC 999.
60 77 POICNTS PIC 999.

'A 4



152

62 77 TYCR PIC 99.
63 77 C-INDEX PIC 990

64 77 PAGE-NO PlC 999 vALUE iS 1.
65 77 LINZ-COUNT Pic 99 VALUE ZERO.
66 77 SAVE-E9Y PIC X(4) .
67 77 TOT-WO-RECORDS PIC 9999999 VALUB IS 0-

68 77 SUS-TOT-NO PIC 9999999.
69

70 01 HEADER.
71 02 FILLER PIC X(14).
72 02 COLLEGE PIC X(30).
73 02 DATE-IN PIC X(8).
74 01 TRAILER.
7S 02 FILLER PIC X(49).
76 02 NO-RECORDS PIC 9999999.
77 01 PRINT-LINE.
78 02 FILLER PiC X(l).
79 02 SOC-SEC-OUT.
80 03 SOC-SEC-O PIC X(3).
81 03 SOC-SEC-Fl PlC X(I).
82 03 SOC-SEC-02 PIC X12).
83 03 SOC-SEC-F2 PIC X(I).
84 03 SOC-SEC-03 PlC X(4).
85 02 FILLER PIC X12).
86 02 NAME-ADDR PIC XiS).
87 02 FILLER PTC X(l).
Be 02 MAJOR-O PIC X(4).
89 02 FILLER PIC X(I).
90 02 STATUS-C PIC X(l).
91 02 FILLER PIC X(l).
92 02 CPA PIC 9.99.
93 02 FILLER PIC X(2).
94 02 COURSE-O OCCURS 3 TIMES.
95 03 C-DEPT PIC X(2).
96 03 FILLER PIC X(1.
97 03 C-NO PIC X(2).
98 03 FILLER PIC X(l).
99 03 CREDITS-C PIC Z9.
100 03 FILLER PIC X(1).
101 03 SEIESTER-O PIC X(1).
102 03 DASH-O PIC X(l).
103 03 YEAR-O PIC X(2).
104 03 FILLER PlC X(2).
105 03 GRADE-O PIC Xl).

r.106 03 FILLER PIC X(2).
107 02 FILLER PIC X(2).
109 01 PAGE-HEADER.
109 02 FILLER PlC X(4) VALUE SPACES.
110 02 DATE-O PIC X(s).
111 02 FILLER PIC X(17) VALUE SPACES.
12 02 COLL-O PIC x(30).
113 02 FILLER PIC X(17) VALu SPACES.
114 02 FILLER PlC XIS) VALUE IS 'PAGE.
115 02 PAGE-O Pic Z29.
116 02 FILLER PlC X(S) VALUB SPACS.
117 01 CoL-NDR-1.
lie 02 FILLER PIC X20)
119 VALUE SOC SEC x G A '; " 1

120 02 FILLER PlC IlO) VALUE RAJ ST CPA'.
121 02 FILLER PiC X(9) VALUE SPACES.
122 02 FILLER PiC X(4) VALUE 'COURSE'.

123 02 FILLER PIC X(12) VALUE SPACES.
124 02 FILLER PlC X(6) VALUE 'COURSE.
125 02 FILLER PIC X(12) VALUE SPACES.

*. 

[*I

' ! .



153

126 02 FILLER PiC X(s) VALUE 'COURSE'.
127 02 FILLER PIC X(f) VALUE SPACES.
128 01 COL-HDR-2.
129 02 FILLER PC X(33) VALUE SPACES.
130 02 FILLER PIC X(Il)
131 VALUE * NMBR CR S-YR GR 0.
132 02 FILLER PIC MIS)
133 VALUE NMBR CR S-YR GR '.

134 02 FILLER PIC X(20)
135 VALUE* NMBR CR S-YR GR .

136 01 SUB-TOT-LINE.
137 02 FILLER PIC X(d) VALUE SPACES.
138 02 FILLER PIC X(S)
139 VALUE IS *TOTAL ,
140 02 SUB-TOT PIC ZZZ2ZZ9.
141 02 FILLER PIC X(7O) VALUE SPACES.
142 PROCEDURE DIVISION.
143 * MAIN-PROGRAM SECTION.
144 START.
14S OPEN INPUT MASTER OUTPUT PRINT-FILE.
146 READ MASTER INTO HEADER AT END GO TO COF.
147 IF SOC-SEC-IN IS - SPACES GO TO GOT-HEADER.
148 MOVE * NO HEADER FOUND ON THE MASTER FILE ***' TO PRINT-LINE.
149 PERFOAM PRINT2-ROUTINE THRU PRINT2-EXIT.
150 GO TO CLOSE-FILES.
151 GOT-HEADER.
152 MOVE COLLEGE TO COLL-O.
153 MOVE DATE-IN TO DATE-O.
154 READ MASTER AT END GO TO EOF.
155 IF SOC-SEC-IN IS NOT - '999999999' 00 TO SAVE-DEPT-NAE.
156 MOVE ' NO ITEM RECORDS IN MASTER FILE ** TO PRINT-LINE.
157 PERFORM PRINT2-ROUTINE THRU PRINT2-EXIT.
158 GO TO CLOSE-FILES.
1s9 SAVE-DEPT-NAME.
160 MOVE MAJOR-IN TO SAVE-KEY.
161 * NAME OF DEPARTMENT IS SUBTOTAL KEY. BREAK OCCURS WHENEVER
162 * FIELD IS DIFFERENT ON 'O CONSECUTIVE RECORDS.
163 MOVE 0 TO SUB-TOT-NO.
164 MOVE 1 TO PACE-NO.
145 * PAGE-NO IS RESET TO 1 FOR EACH DEPARTMENT REPORT.
166 MOVE 16 TO LINE-COUNT.
167 MOVE SPACES TO PRINT-LZNE.
168
169 ITEM-LOOP.
170 PERFORM ITEM-ROUTINE TNRU ITEM-EXIT.
171 ADD I TO SUB-TOT-NO.
172 READ MASTER INTO TRAILER AT END GO TO EOF.
173 IF MAJOR-IN IS , SAVE-REy GO TO ITEM-LOOP.
174
175 DO-SU-TOTALS.
176 MOVE SUB-TOT-NO TO SUB-TOT.
177 RITE PRINT-BUFF FROM SUB-TOT-LIE AFTER ADVANCING 2 LINES.
170 ADD SUB-TOT-NO TO TOT-NO-RECORDS.
179 IF SOC-SEC-IN IS NOT a 1999999999 GO TO SAVE-DEPT-NAME.
180 MOVE TOT-NO-RECORDS TO SUB-TOT.
181 WRITE PRINT-BUFF FROM SUB-TOT-LINE
182 AFTER ADVANCING TOP-OF-PACE.
183 If NO-RECORDS IS a TOT-NO-RECORDS GO TO CLOSE-FILES.
134 MOVE I *** MASTER TRAILER VERIFICATION HAS FAILED *00
16S TO PRINT-LINE.
186 PERFORM PRINT2-ROUTItNE TRU PB]NT2-EXIT.

! 187 CLOSE-FILES.
188 CLOSE MASTER PRINT-FILS.

; 189 STOP RUN.

A ' __ _ __ _ _ __ _*

* 44 .. . . .. m.... . - - .. .. . . . .+ ., iH l iil i . . .: +" ' +']" .. .. "



154[

190 gOt.
191 MOVE OF ON MASTER FILE *** TO PRINT-LINE.
192 PERFORM PRINT2-ROUTINE THRU PRINT2-EXIT.
193 GO TO CLOSE-FILES.
194
195 * SUB-ROUTINE SECTION.
196
197 PRINT1-ROUTINE.
198 IF LINE-COUNT IS < 16 GO TO NORMAL-PRINT.
199 PERFORM HEADER-ROUTINE THRU HEADER-EXIT.
200 WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING 2 LINES.
201 ADD 2 TO LINE-COUNT.
202 GO TO CORMON-POINT.
203 NORMAL-PRINT.
204 WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING 1 LINES.
205 ADD I TO LINE-COUNT.
206 COMMON-POINT.
207 MOVE SPACES TO PRINT-LINE.
208 PRINTI-EXIT. EXIT.
209
210 PRINT2-ROUTINE.
211 IF LINE-COUNT IS ) 14
212 PERFORM HEADER-ROUTINE THRU HEADER-EXIT.
213 WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING 2 LINES.
214 ADD 2 TO LINE-COUNT.
215 MOVE SPACES TO PRINT-LINE.
216 PRINT2-EXIT. EXIT.
217
218 HEADER-ROUTINE.
219 MOVE PAGE-NO TO PAGE-O.
220 WRITE PRINT-BUFF FROM PACE-HEADER
221 AFTER ADVANCING TOP-OF-PAGE.
222 ADD I TO PAGE-NO.
223 WRITE PRINT-BUFF FROM COL-HDR-1 AFTER ADVANCING 2 LINES.
224 WRITE PRINT-BUFF FROM COL-HDR-2 AFTER ADVANCING 1 LINES.
225 MOVE 0 TO LINE-COUNT.
226 HEADER-EXIT. EXIT.
227
228 ITEM-ROUTINE.
229 MOVE SOC-SEC-IN-1 TO SOC-SEC-O1.
230 MOVE SOC-SEC-IN-2 TO SOC-SEC-O2.
231 MOVE SOC-SEC-IN-3 TO SOC-SEC-03.
232 MOVE '-' TO SOC-SEC-Fl.
233 MOVE -' TO SOC-SEC-F2.
234 MOVE NA4E-IN TO NAME-ADDR.
235 MOVE MAJOR-IN TO MAJOR-O.
236 MOVE STATUS-IN TO STATUS-O
237 * CALCULATE THE CPA.
236 MOVE 0 TO POINTS.
239 MOVE 0 TO CR-RRS. f
240 PERFORM GPA-ACCUM THRU GPA-EXIT VARYING C-INDX
241 FROM I BY 1 UNTIL C-INDEX IS ) NO-COURSES.
242 IF CR-HRS IS a 0 GO TO NO-GPA.
243 DIVIDE POINTS BY CR-HRS GIVING GPA ROUNDED.
244 * IN THE FOLLOWING THESE INDICES ARE USED:
245 * END-ALL: THE INDEX OF THE FIRST UNUSED COURSE
244 * ENTRYs THIS MARKS THE END OF THE COURSES
247 * TO PRINTt
246 0 END-MARKERs WHEN FIL.-LINE IS CALLED END-MARKER
249 * POINTS AT THE FIRST COURSE ENTRY PAST THE
250 * LAST ENTRY TO BE PUT INTO THE LINEI
251 C-INDEXs WHEN FILL-LINE IS CALLED C-INDEX POINTS
252 * AT THE FIRST COURSE ENTRY WHICH GETS
2S3 * PUT INTO THE PRINT-LINE/ THUS, IF C-INDEX

!q
......1 .. ... . . . I m ' .' ' " - m.m -a M J b , + ', + + - . . +' " .. . t..



155

254 IS EQUAL TO END-MARKER, NO COURSE ENTRIES
255 * GET PUT INTO THE PRINT LINE:
256 * P-INDEX: INDEXES THE SPOT IN THE PRINT-LINE
257 * WHERE THE ENTRY POINTED TO BY C-INDEX
258 * IS TO BE MOVED; THUS* ITS RANGE IS I TO 3.
259
260 NO-CPA.
261 MOVE I TO C-INDEX.
262 ADD I NO-COURSES GIVING END-ALL.
263 MOVE 4 TO END-MARKER.
264 IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
265 PERFORM PFLL-LINE THRU FILL-EXIT.
266 PERFORM PRINT2-ROUTINE THRU PRINT2-EXIT.
267 MOVE ADDR-IN-1 TO NAME-ADDR.
268 MOVE 7 TO END-MARKER.
269 IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
270 PERFORM FILL-LINE TRRU FILL-EXIT.
271 PERFORM PRINTI-ROUTINE THRU PRINTI-EXIT.
272 MOVE ADDR-IN-2 TO NAME-ADDR.
273 MOVE 10 TO END-MARKER.
274 COURSE-LOOP.
275 IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
276 PERFORM FILL-LINE THRU FILL-EXIT.
277 PERFORM PRINTI-ROUTINE THRU PRINT1-EXIT.
278 IF C-INDEX a END-ALL GO TO ITEM-EXIT.
279 ADD 3 C-INDEX GIVING END-MARKER.
280 GO TO COURSE-LOOP.
281 ITEM-EXIT. EXIT.
282 FILL-LINE.
283 MOVE 1 TO P-INDEX.
284 CHECK-END.
285 IF C-INDEX IS - END0-MARXER GO TO PILL-EXIT.
286 MOVE DEPT-OF (C-INDEX) TO C-DEPT (P-INDEX).
287 MOVE COURSE-NO (C-INDEX) TO C-NO (P-INDEX).
288 MOVE CREDITS (C-INDEX) TO CREDITS-O (P-INDEX).
289 MOVE SEMESTER (C-INDEX) TO SEMESTER-O (P-INDEX).
290 MOVE f-' TO DASH-O (P-INDEX).
291 MOVE YEAR (C-INDSX) TO YEAR-O (P-INDEX).
292 MOVE GRADE (C-INDEX) TO GRADE-O (P-INDEXi.

J 293 ADD I TO C-INDEX.
294 ADD I TO P-rNDEX.
295 GO TO CHECK-END.
296 PILL-EXIT. EXIT.
297
298 GPA-ACCUM.
299 IF GRADE (C-INDEX) IS NOT a 'A' GO TO NOTA.
300 MULTIPLY CREDITS (C-INDEX) BY 4 GIVING INCR.
301 CO TO COMMON-ADD.
302 NOTA.
303 IF GRADE (C-INDEX) IS NOT w '3' GO TO NOTS.
304 MULTIPLY CREDITS (C-INDEX) BY 3 GIVING INR.

305 GO TO COMMON-ADD.
306 NOTS.
307 IF GRADE (C-INDEX) IS NOT a 'C' GO TO NOTC.
300 MULTIPLY CREDITS (C-INDEX) BY 2 GIVING tNCR.
309 00 TO CO~MGN-AvIo.
310 NOTC.
311 IF GRADE (C-INDEX) IS NOT a 'D GO TO NOTD.
312 MULTIPLY CREDITS (C-INDEX) BY I GIVING INCR.
313 GO TO COMMON-ADD.
314 MOTD.
31S IF GRADE (C-INDEX) IS NOT * 'P' GO TO CPA-tXIT.

-316 MOV 0 TO INCR.
317 COMMOIN-ADD.



156L

318 ADD M10R TO POINTS.
?19 ADD CREDITS (C-ZNDgXJ TO CRt-iRS.
320 CPA-EXIT. EXIT.
321



157

PROGRAM S

1 IDENTIFICATION DIVISION.
2
3 * REPORT CONTAINS T82 INPUT DATA ALONG WITH THE
4 CURRENT COMMISSION FOR EACE SALESMAN. AT THE
5 • END OF THIS SINGLE SPACED REPORT THE FOLLOWING
6 * TOTALS ARE PRINTED: YEAR TO DATE SALES. CUR-
7 • RENT SALES, CURRENT COMMISSION.
8 •

9 * CURRENT COMMISSION IS CALCULATED AS FOLLOWS:
10 * CURRENT-COM41ISSION * CURRENT-SALES *
11 * ( COMMISSION-RATE . VOLUME-BONUS + DEPARTMENT-BONUS )
12 0

13 * WITH DEPARTMENT BONUS DETERMINED AS FOLLOWS:
14 * DEPT BONUS
Is * 01 0.11
16 02 0.19
17 * 04 0.70
18 * 05 0.69
19 * 06 0.41
20 * 07 0.69
21 * 09 0.49
22 * OTHER 0.09
23 *
24 * WITH VOLUME BONUS DETERMINED AS FOLLOWS:
25 * AVERAGE MONTHLY SALES BONUS
26 * UNDER $500 0.09
27 * SSO0 TO $999.99 0.39
28 * $1000 TO $1999.99 0.49
29 * OVER $2000 0.69
30 *
31 * WITH AVERAGE MONTHS SALES DETERMINED AS FOLLOWS:
32 * AVERAGE-MONTHLY-SALES w
33 * ( YEAR-TO-DATE-SAUS * CURRENT-SALES ) / MONTHS-EMPLOYED
34
35 PROGRAM-ID. COMMISSION-PEPORT.
36
37 AUTHOR.
38 DANIEL CASTAGNOICS 3400,STUDENT NUM4ER 654,PROGRAM 1.
39
40 REMARKS. SLIGHTLY MODIFIED FOR CMS.1 BY A.ACREE.
41 MUTATION TESTING UNCOVERED THE FOLLOWING ERRORS AND
42 INEFFICIENCIzES:
43 (1) REPORT HEADER WITH PAGE ADVANCE WAS NOT PRINTED
44 AFTER PULL-PAGE CONDITION RAISED BY INVALID DATA RECORD
45 EXTRA PERFORM INSERTED.
46 (2) DATA ITEMS DEFINED AND NEVER USED -- DELETED.
47 (3) MOVE STATEMENT REPEATED -- SECOND VERSION DELETED.
45 (4) TWO USELSS INITIALIZATIONS DELETED.
49

51 ENVIRONMNT DIVISION.
52
53 CONFIGURATION SECTION.
54 SOURCE-COMPUTER.
S5 CYSR-74.
56 OSJECT.CONIPUTR.
S7 CYSE-74.

;' So SPECIAL-NAMES.
59 C01 IS TO-TOP-OF-PAGE.
60
41 INPUT-OUTPUT SECTION.

U- -



158

62 FILE-CONTROL.
63 SELECT CARD-FILE ASSIGN TO INPUTO.
64 SELECT PRINT-FILE ASSIGN TO OUTPUTO.
65
66 DATA DIVISION.
67
68 FILE SECTION.
69
70 FD CARD-FILE
71 RECORD CONTAINS 80 CIARACTERS,
72 LABEL RECORDS ARE OMITTED
73 DATA RECORD IS CARD-RECORD.
74
75 01 CARD-RECORD.
.6 02 I-CARD-DATA.
77 03 I-STORE-NUMBER PIC 99.
78 03 I-DEPARTMNT PIC XX.
79 03 I-SALESMAN-NUMBER PIC 999.
80 03 I-SALESMAN-NAME PIC X(20).
81 03 I-YEAR-TO-DATE-SALES PIC 9(S)V99.
82 03 I-CURRENT-SALES PIC 9(S)V99. .

83 03 I-CONMMSSION-RAT PIC V99.
84 03 -NONTNS-ENPLOYED PIC 99.
85 02 FILLER PIC X(35)
86
87 FD PRINT-FILE
88 RECORD CONTAINS 132 CHARACTERS,
89 LABEL RECORDS ARE OM TTtOD
90 DATA RECORD IS LINE-RECORD.
91
92 01 LINE-RECORD PIC X(132).
93
94
95 WORKING-STORAGE SECTION.
96
97 77 W-DEPARTNENT-BONUS PIC V999.
98 77 W-VOLUME-BONUS PIC V999.
99 77 W-DEPARTMENT PIC XX.
100 77 W-STORE-NUMBER PIC 99.
101 77 W-SALESMAN-NUMBER PIC 999.
102 77 W-YEAR-TO-DATE-SALES PIC 9(S)V99.
103 77 N-CURRENT-SALES PIC 9(5)V99.
104 77 W-COMMISSION-RATE PIC V99.
10S 77 W-MONTHS-EXPLOYED PIC 99.
106 77 W-CURRENT-COMMISSION PIC 9(4)V99.
107 77 W-TOTAL-YEAR-TO-DATE-SALES PIC 9(9)V99
108 VALUE 0.
109 77 v-TOTAL-CURRENT-SALBS PIC 9(l)V99
110 VALUE 0.
111 77 W-TOTAL-CURRENT-CONM1SSTOM PIC 917)V99
112 VALUE 0. 1113 77 W-AVERAGE-MONTULY-SALES PlC 9(7)V99

114 VALUE 0.

115
117 *01 KEY-TO-RECORDS.
lie 02 SALESAN-MUM PIC 999.

S119
120 01 fLAGS,.I

i121 02 VALID-DATA-FIAG PIC XXX
122 VALUE 'YES'.
123 02 MORE-DATA-REPINS-FLAG PIC XXX

I;;124 VALUE 'YZS'.

125

... . . ... L L



159

126 01 CONSTANTS.
127 02 DEPT.
128 03 DEPT-1-O2-2 PIC V999
129 VALUE 0.001.
130 03 0EPT-4-OR-9 PlC "So9
131 VALUE 0.004.
132 03 DZPT-S-OR-7 PlC V999
133 VALUE 0.006.
134 03 OcPT-4 PIC V999
135 VALUE C.007.
136 03 DEPT-OTUER PIC V999
137 VALUE 0.000.
138 02 VOLUMN.
139 03 LEVEL-1 PIC V999
140 VALUE 0.
141 03 LEVEL-2 PIC V999
142 VALUE 0.003.
143 03 LEVEL-3 PIC V992
144 VALUE 0.004.
145 03 LMVL-4 PIC V999
146 VALUE 0.006.

1 147
148 01 COUNTERS.
149 02 LINE-COUNT PIC 99
ISO VALUE 0.
151
152 01 ?FINAL-TOTAL-LINt.
153 02 FILLER PIC XC10)
154 VALUE ' TOTAL'.
1ss 02 FILLER PIC X(Sl)
156 VALUE SPACES.
157 02 O-TOT&L-YEAR-TO-OATE-SALtS PIC Z(9).99.
158 02 FILLER PIC XXX
159 VALUE SPACES.
160 02 0-TOTAL-CURRENT-SALES PIC Z(S).99.
161 02 FILLER PIC X(5)

"' 162 VALUE SPACES.
163 02 O-TOTAL-CURREZET-CONMISSION PIC Z(7).99.
164 02 FILLER PlC X(201
165 VALUE SPACES.
166
167 01 REPORT-LI NE-1.j 166 02 FILLER PIC X(61)
169 VALUE SPACES.
170 02 FILLER PIC X(iO)
171 VALUE 'COHqMISSION.
172 02 FILLER PIC X(SO)
173 VALUE SPACES.
174 02 ILLER PIC X(G)
175 VALUE 'PAGE I..
176 02 O-PAGI-NUNSER PIC 999
177 VALUE 0.
170 02 FILLER PIC XX
179 VAL UE SPA¢I98.

• ISO
SIl 01 MEORT-LINE-2.

162 02 FILLER PIC X(63)183 VALUE SPACES.

14 02 FILLER Pic X)

1IS VALUE 'EPORT. •, 116 02 /'?LLZR PIC X(431
i '  :107 VALUE SPAC93.

200
109l 01 NEADIIGoUI- 1.

L.7



160

190 02 FILLER PC X(4
191 VALUE SPACES.
192 02 FILLER PiC XIs)

193 VALUE 'STORE'.
194 02 FILLER Pic X(4

195 VALUE SPACES.
196 02 FILLER PiC X(10)
197 VALUE 'DEPARTMENT'.
198 02 FILLER PIC X14)
199 VALUE SPACES.
200 02 FILLER PIC X(S)

201 VALUE 'SALESMAN'.
202 02 FILLER PIC X(9)

203 VALUE SPACES.
204 02 FILLER PIC X()

205 VALUE 'SALESMAN'.
206 02 FILLER PIC X(10)

207 VALUE SPACES.
208 02 FILLER PIC X(12)

209 VALUE 'YEAR TO DATE'.
210 02 FILLER PlC K(S)
211 VALUE SPACES.
212 02 FILLER PIC X(7)

213 VALUE 'CURRENT**
214 02 FILLER PIC X(4)

215 VALUE SPACES.
216 02 FILLER PIe X(10)

217 VALUE 'CO/MISSZON'
219 02 FILLER PIC X(S)

219 VALUE SPACES.
220 02 FILLER PIC X7)

221 VALUE 'CURRENT'.
222 02 FILLER PIC X(6)

223 VALUE SPACES.
224 02 FILLER PIC X(6)

225 VALUE 'MONTHS'.
226 02 FILLER PIC X(S)

227 VALUE SPACES.
228
229 01 HrEADING-LINE-2.
230 02 FILLER PiC X(4)

231 VALUE SPACES.
232 02 FILLER Pic X(6)

233 VALUE ONUNSER'.
234 02 FILLER PIC MIS)

235 VALUE SPACES.
236 02 FILLER PIC X14)

237 VALUE 'NUMOER'-
238 02 FILLER PiC Xc12)
239 VALUE SPACES. [1
240 02 FILLER PIC X,4)

241 VALUE '-N-' -

242 02 FILLER Pic x,16)| , 243 VALUE SPACES.
244 02 FILLER PIC 1151

24S VALUE 'SALES*
246 02 FILLER PIC X(9)

247 VALUE SPACES.
240 02 FILLER PIC 1(s)
249 VALUE 'SALES.
250 02 FILLER PIC X(S)

2S1 VALUE SPACES.
252 02 FILLER PIC 1141
253 VALUE 'RATE'.

• ... +" il e

• +7



161

254 02 FILLER PIC X(7)
255 VALUE SPACES.
256 02 FILLER PlC X(10)
257 VALUE COMIISSIO, .
258 02 FILLER PIC X(3)
259 VALUE SPACES.
260 02 FILLER PIC X(I)
261 VALUE * EMPLOYEDI.
262 02 FILLER PIC X(7)
263 VALUE SPACES.
264
265 01 VALID-DATA-LINE.
266 02 FILLER PIC X(6)
267 VALUE SPACES.
268 02 O-STOREC-UMBER PIC Z9.
269 02 FILLER PIC X(9)
270 VALUE SPACES.
271 02 O-DEPARTMENT PIC XX.
272 02 FILLER P]C X(O)
273 VALUE SPACES.
274 02 O-SALESMAN- UMBER PIC Z29.
275 02 FILLER PIC X(6)
276 VALUE SPACES.
277 02 O-SALESMAN-NAME PIC X(20).
278 02 FILLER PIC X(6)
279 VALUE SPACES.
280 02 O-YEAR-TO-DATE-SALtS PIC Z(6) .99.
281 02 FILLER PIC X(S)
282 VALUE SPACES.
283 02 O-CURRENT-SALES PIC Z(A).99.
284 02 FILLER PIC X(?)
265 VALUE SPACES.
286 02 O-COMMISSION-RATE PIC .99.
287 02 FILLER PIC X(7)
288 VALUE SPACES.
289 02 O-CURRENT-CONMISSION PIC z(S).99.
290 02 FILLER PIC X(S)
291 VALUE SPACES.
292 02 0-ONTHS-EMPLOYED PIC Z9.4 293 02 FILLER PIC X(20)
294 VALUE SPACES.
295
296 01 INVALID-DATA-LINE.
297 02 O-BAD-DATA PIC X(45).
298 02 FILLER PiC X(30)
299 VALUE * INVALID DATA ON THIS CARDI.
300 02 FILLER PIC X(S7)
301 VALUE SPACES.
302
303
304

~305
306 PROCEDURE DIVISION.
307
300

,; 309 PREPAREC-PAYMqENIT- REPORT.

310 OPEN INPUT CARD-FILE
3t,11 OUTPE! T PI NT-IL.t~ t 312 READ CARD-,I LS
313 AT 20NOVW *NO$ TO MORB-DATA-RIKAINSoPLAG.

4314
.3 15 ZIP MORS-VATA-0ANS-FLAO w $YES'€; L316 PERFORM REPORT-HEADSM-OUTPUT

, li ,317 PERFOPRM HNrDING-OUTPUT



162

318 PERFORM CairnISSION-CALCULATION
319 UNTIL NORE-DATA-REMAINS-rLAG O NO 1.
320
321 PERFORM CALCULAED-TOTALS-OUTPUT.
322 CLOSE CARD-PILE
323 PRINT-FILE.
324 STOP RUN.
325
326
327 *CHECK VARIABLES TO SEE IF THEY CONTAIN VALID INFORMATION
328
329 VALIDATION.
330 If I-STORE-NUMBER IS NUM4ERIC
331 AND I-SALESM4AN-NUM4BER IS NUMERIC
332 AND I-YEAR-TO-DATE-SALES IS NUMERIC
333 AND I-CURRENT-SALES IS NUMERIC
334 AND I-CONMISSION-RATE IS NUMERIC
335 AND I-MONTHS-EMPLOYED IS NUMERIC
336 MOVE 'YES' TO VALID-DATA-FLAG
337 ELSE
338 MOVE 'NO' TO VALID-DATA-FLAG.

33
340
341 *MOVE INPUT INFORMATION TO WORKING STORAGE
342 *VARIABLES
343
344 DATA-MOVE.
345 MOVE I-STORLE-NUMBER TO W-STORE-NUMBER.
346 MOVE I-DEPARTMENT TO W-OEPARTMENT.
347 MOVE I-SALESMAN-NUMBER TO W-SALESMAN-NUMBER.
346 MOVE I-YEAR-TO-DATE- SALES TO N-YEAR-TO-DATE-SALES.
349 MOVE I-CURRENT-SALES TO W-CURRENT-SALES.
350 MOVE I-COMMHISSION-RATE TO W-COMMISSION-RATE.
351 M4OVE I-MONTHS-EMPLOYED TO W-MONTHS-EMPLOYED.
352
353 CALCULATE-DEPARTMENT-BONUS.
354 IF W-DEPARTMENT - '01' OR
355 V-DEPARTMENT ma '02'
356 MOVE DZPT-1-OR-2 TO W-rEPARTMENT-DONUS
357 ELSE IF W-DEPARTM4ENT - '06' OR
358 V-DEPARTMENT - '09'
359 MOVE DEPT-6-OR-9 TO V-DEPARTMENT-BONUS
360 ELSE IF V-DEPARTMENT a '05' OR
361 V-DEPARTM4ENT - '07'
362 MOVE DEPT-5-OR-7 TO N-DEPARTMENT-DONUS
363 ELSE IF V-DEPARTMENT - '04'
364 MOVE DEPT-4 TO W-DEPARTMENT-BONUS
365 ELSE
366 MOVE DEPT-OTHER TO V-DEPARTMENT-BONUS.

38 CALCULATE-VOLUME-9ONUS. [
369 COMPUTE V-AVERAGE-MONTHLY-SALES ROUNDEDKi 370 ( -YEAR-TO-DATE-SALES + N-CURRENT-SALES
371 / -MONTHS-EMPLOYED.
372 1? V-AVEPRAGE-MONTHLY-SALES < 500
373 MOVE LEVEL-! TO V-VOLUME-BONUS
374 ELSE IF N-AVERAGE-MONTHLY-SALES -C999.99
375 MOVE LEVEL-2 TO WVOLU149-S0MUS
376 ELSE IF W-AVERAGE-MOWNHLY-SALES 4( 1999.99
377 MOVE LEVEL-] TO V-VOLUME-BONUS7376 ELSE
379 MOVE LMVL-4 TO V-VOLUMC-BONUS.
360
361 CONMISSION-CALCULATION.



163

362 PERFORM VALIDATION.
3$3
364 It VALID-DATA-FLAG * YES'
365 PERFORM DATA-MOVE
366 PERFORM CALCULATE-DEPARTMENT-DONUS
387 PERFORM CALCULATE-VOLUME9-9ONUS
386 COMPUTE W-CURRENT-COMMISSION ROUMDCD - -CURRENT-SALES
369 ( V-COMMISSION-RATE + W-VOLUME-8ONUS*
390 W-DEPARTMENT-SONUS )
191 ADD W-YEAR-TO-DATE-SALES TO W-TOTAL-YEAR-TO-DATC-SALIES
392 ADD W-CURRENT-SALES TO N-TOTAL-CURRENT-SALES
393 ADD W-CURRENT-COMNissION TO W-TOTAL-CURRENT-COMMISSION
394 PERFPORM4 VALID-DATA-OUTPUT
395 ELSE
396 PERFORM INVALID-DATA-OUTPUT.
397
396 READ CARD-FILE
399 AT END MOVE $NO' TO MORE-DATA-REMAINS-rLAG.
400
401 VALID-DATA-OUTPUT.
402 MOVE N-STORE-NUMBER TO 0-STORE-NUMBER.
403 MOVE N-DEPARTMENT TO 0-DEPARTMENT.
404 MOVE W-SALESMAN-NUMBER TO 0-SALESMAN-NUMBER.
405 MOVE I-SALESMAN-NAME TO 0-SALESMAN-NAME.
406 MOVE W-YEAR-TO-DATE-SALES TO 0-WtAR-TO-DATE-SALES.
407 MOVE W-CURRENT-SALES TO 0-CURRENT-SALES.
408 MOVE N-COMMISSION-RATE TO 0-COMMISSION-RATE.
409 MOVE V-CORRENT-COJ4MISSION TO 0-CURRENT-COMMISSION.
410 MOVE N-MONTHS-EMPLOYED TO 0-MONTHS-EMPLOYED.
411 * MOVE I-SALESMAN-NAME TO 0-SALESMAN-NAME.
412 MOVE VALID-DATA-LINE TO LINE-RECORD.
413 WRITE LINE-RECORD AFTER ADVANCING 1 LINES.
414 ADD I TO LINE-COUNT.
415 It LINE-COUNT IS GREATER THAN 10
416 *MOVE 0 TO LINe-COUNT
417 PERFORM REPORT-HEADER-OUTPUT
418 PERFORM UEADINC-OUTPUT.i 419
420 INVALID-DATA-OUTPUT.
421 MOVE I-CARD-DATA TO 0-BAD-DATA.
422 MOVE INVALID-DATA-LINE TO LINE-RECORD.
423 WRITE LINZ-RECORD AFTER ADVANCING I LINES.
424 ADD I TO LINE-COUNT.
425 IF LINE-COUNT IS GREATER TRAN 10
426 *MOVE 0 TO LINE-COUNT

427 PERFORM HEADITN-OUTPUT U
' 427 PEF REPORTIN-EAER-UTPU

43 READING-OUTPUT.
431 OVEHtADIIIG-LINE-1 TO LINE-RECORD.

432 WRITE LINE-RECORD AFTER ADVANCING 1 LINBS.
433 MOVE HEADING-LINE-2 TO LINE-RECORD.
434 WRITS LIME-RECORD AFPTER ADVANCING I LINES.
435 MOVE SPACES TO LINE-RECORD.
436 WRITS LIME-RECORD AFTER ADVANCING 2 LINES.
437 ADD 4 TO LINE-COUNT.
438
439 CALCULATED-TOTALS-OUTPUT.

7440 MOVE W-TO1'AL-YtAP-TO-DAT-SALES TO O-TOTAL-YEAR-TO-DATE-SALEtS
441 MOVE W-TOTAL-CURRCMT-SALES TO O-TOTAL-CUARRNT-SALZS
442 MOVE N-TOTAL-CURRENT-COMMItS ION TO O-TOTAL-CURENT-CCNNISSION
443 MOVE FINAL-TOTAL-LINE TO LINE-RECORD.

~2444 WRITE LINE-RECORD AFPTER ADVANCING 2 LINBS.
445



1 64

446 REPORT-8RADIR-OUTPU?.
447 ADD I To 0-PAGE-NUH93ER.
441 MOVE RZPORT-L!NS-1 TO LIVME-RECORD.
449 WRITE LINZ-RECORD AFTER ADVANCING TO-TOP-OP-PAGE.
450 mOVE REPORT-LINE-2 TO LINZ-RECORD.
451 WRITE LINE-RECORD AFTER ADVANCING 1 LINES.
452 MOVE SPACES TO LINE-RECORD.
453 WRITE LINE-RECORD AFTER ADVANCING 3 LINES.
454 MOVE 4 TO LINE-COW?.*

4s



165

PROGRAM 6

I IDENTIFICATION DIVISION.
2 PROGRAM-ID. NAINTMFS.
3 REMARKS. THIS PROGRAM IS ADAPTED FROM YOURDANPS °LEARNING
4 TO PROGRAM IN STRUCTURED COBOLe.
5 (1) THE PROGRAM AS PUBLISHED DID NOT WORK. TUE LAST
6 PAIR OF APPLICATION CARDS WAS IGNORED. IF THERE
7 WAS NO LAST PAIR (EMPTY FILE) THE PROGRAM BOMBED.
a THIS ERROR WAS FIXED BY ADDING ANOTHER FILE-CONTROL
9 FLAG AND ADDING LOGIC IN *91-GET-A-PAIR...*
10 (2) THE NOTE ABOUT CHECKING PAIR VALIDITY
11 IN PARAGRAPH *A2-UPDATE MASTER0 SHOULD BE REPEATED
12 IN THE ANALOGOUS PARAGRAPH *A4-ADD-REMAINING-CARDS".
13 (3) IF THE FIRST CARD IS INVALID# ITS LOG ENTRY
14 WOULD HAVE BEEN WRITTEN BEFORE TE LOG FILE HEADER.
15 (4) THE PUBLISHED PROGRAM CONTAINED MUCH EXTRANEOUS
16 CODE. THE REASON FOR SOME OP THIS WAS THE FREE USE OF
27 THE 8COPY. VERB. THESE PRODUCED MANY UNNECESSARY
18 MUTANTS, AND HAVE BEEN COMMENTED OUT WITH ,'.
19 (S) THE PROGRAM DID NOT DO ANYTHING SENSIBLE WHEN
20 THE END-OF-FILE WAS ENCOUNTERED AFTER THE FIRST OF A

21 PAIR OF CARDS.
22
23 ENVIRONMENT DIVISION.
24 CONFIGURATION SECTION.
25 SOURCE-COMPUTER. PRIME.
26 OBJECT-COMPUTER. PRIME.
27 INPUT-OUTPUT SECTION.
28 FILE-CONTROL.
29 SELECT APPLICATION-CARDS-FILE ASSIGN TO INPUT1.
30 SELECT UPDATE-LISTING ASSIGN TO OUTPUTI.
31 SELECT CREDIT-MASTER-OLD-FILE ASSIGN TO INPUT2.
32 SELECT CREDIT-MASTER-NEW-FIL ASSIGN TO OUTPUTZ.
33
34 DATA DIVISION.
35 FILE SECTION.
36
37 FD APPLICATION-CARDS-FILE
38 RECORD CONTAINS 80 CHARACTERS
39 LABEL RECORDS ARE OMITTED
40 DATA RECORD IS NAME-ADDRESS-AND-PHONE-IN.
41 01 NANE-ADDRESS-AND-PHONE-IN.
42 05 NAME-AND-ADDRESS-IN.
43 10 NAME-IN PIC X(20)•44 *** 10 ADDRESS-IN.
4S i* s STREET-IN PIC X(20).
46 * 15 CITY-19 PIC X(13). -

47 15 STATE-IN PIC XX.
48 15 ZIP-IN PIC X(5).
49 10 ADDRESS-IN PIC X(40).
so 05 PRONE-IN PIC X(11).
51 05 FILLER PlC x.
52 05 CHANGE-CODE-IN PIC 3X.
53 05 ACCT-NUM-IN1 PIC 9().
54
55 FO UPDATE-LISTING
56 RECORD CONTAINS 132 CHARACTERS
57 LABEL RECORDS ARE OMITTED
s5 DATA RECORD IS PRINT-LINS-OUT.
59 01 PRINT-LINE-OUT PIC X(132).
40
61 FD CREDIT-MASTER-OLD-FILE

a g I b "



166

62 RECORD CONTAINS 127 CHRACTERS
63 LABEL RECORDS ARE STANDARD
64 DATA RECORD IS CREDIT-HASTCR-RtCORD.
65 01 CREDIT-MASTER-OLD-RZCORD.
66 05 ACCT-NUM-MAS-OLD PIC 9(6).
67 * THE SUBFIELDS ARC NEVtR REPEtRID TO IN TUN PROGRAM
68 USE FILLER INSTEAD
69 *'05 NAME-AND-ADDRESS-NAS-OLD.
70 "' 10 NAME-HAS-OLD PIC X(20).
71 ' 10 STREET-MAS-OLD PIC X(20).
72 ' 10 CITY-MAS-OLD PIC 1(131.
73 10 STATE-HAS-OWD PIC XX.
74 ' 10 ZIP-HAS-OLD PIC SM3.
75 "' 05 PRONE-MAS-OLD.
76 ' 10 AREA-CODE-MAS-OLD PIC %(3).
77 ' 10 NUMBER-MHAS-OLD PIC 9(7).

7905 FILLER PIC WO7).
so THE SUBFIELDS ARC NEV9R REFERRED TO IN THE PROGRAM.
81 05 CREDIT-INF0-MAS-OLD.
82 "' 10 SEX-MAS-OLD PIC X.
83 10 MARITAL-STATVS-MAS-OLD PIC X.
84 10 NUMBER-DEPENS-PAS-OLD PIC 99.
85 " 10 !NCOME-IIUNOREDS-RAS-OLD PIC 903).
86 0 10 YEARS-EMPLOYZD-MAS-OLD PIC 99.
87 ~' 10 OWN-OR-RENT-KAS-OLD PIC X.
88s 10 MORCACE-OR-RENTAL-MAS-OLD PIC 903).
89 ' ~ 10 OTHER-PA114ENTS-NAS-OLD PIC 903).
90 05 CREDIT-INFO-HAS-OLD PIC X(16).
91 05 ACCOUNT-INFo-mAs-oLD.
92 "' 10 DISCR-INCOME-HAS-OLD PIC 9t3).

93 ' 10 CREDIT-LIMIT-OLD PIC 9(4).
94 10 FILLER PIC 990).
95 10 FILLER PIC 914.
96 10 CURRENT-BALANC-WING-OLD PIC S9(6)V99.
97 05 SPARE-CHARACTERS-OLD PIC X120).
98
99 FD CREDIT-NASTER-MN-FILE
100 RECORD CONTAINS 127 CRARACTCRS
101 LABEL RECORDS ARE STANDARD
102 DATA RECORD IS CREDIT-NAST!R-RECORD.
103 01 CRtOIT-HASTER-NEW-RECORD. 1
1a4 05 ACCT-WUN-MAS-WEW PIC 9(6).
105 05 NM-AND-ADDRtSS-MAS-NEW.
106 ' ~ 10 NAME-MAS-NEW PIC X(20).
107 "' 10 STRZZT-NAS-NCV PIC X(2010
108 ' 10 CITY-MAS-NEW PIC 113).[
109 0* 10 STArE-MAS-NElW PIC Xl.

110 0 ZI-RASNVAPIC 9(s),
III 0S NAM9-ANV-ADDRESS-*AS-NEW PIC X(60). [
112 05 PHONE-MAS-NEV.'~93.L

113 10 ARMS-DE-MAS-VW PIC 909.
114 10 NCOBRNS-8EPICS-9AS7).

120 10 YE-AS-pLOE.NSN PIC 99.
*11 10 MAN-R T-EATl'-AS-9W PIC 1.

lie 10 NUOR-ORB-TAAS-EW PIC 993.

'p121 10 OWN-R-AYNT-MAS-ZW PIC 9(.
124 0S ACCOUNT-WNO-MAS-NEW.4)125 10 oZscR-INCoP!-MAS-N PIC 890).



167

126 10 CREDIT-LINXIT-MAS-NFd PIC 9(4).
127 10 CURRENT-BALANCE-OWING-NEW PIC S9(6)V99.
128 05 SPARC-CHARACTERS-NEW PIC X(20).
129
130 WORKING-STORAGE SECTION.
131
132 01 CRZDIT-INFORMATION-IN.
133 0S CARD-TYPE-IN PIC X.
134 05 ACCT-NUN-IN2 PIC 9(46).
135 05 FILLER PIC X.
136 05 CREDIT-INFO-IN PIC X(22).
137 0S FILLER PIC X(SO).
138
139 01 COMON-WS.
140 05 CARDS-LEFT PIC X(3).
141 05 NEXT-CARD-THERE PIC X(3).
142 05 OLD-MASTER-RECORDS-LEFT PIC X(3).
143 OS NEW-ASTER-RECORDS-LEFT PIC X(3).
144 05 FIRST-CARD PIC X(4).
145 05 SECOND-CARD PIC X(4).
146 05 ACCT-WUM-MATCH PIC X(4).
147 OS PAIR-VALIDITY PIC X14).
148
149 01 LOG-HEADER-WSAI.
1SO OS FILLER PIC X(47) VALUE SPACES.
151 OS FILLER PIC X(38)
152 VALUE $LOG OF ADDITIONS DELETIONS AND CHANGES'.
153 0S FILLER PIC X(47) VALUE SPACES.
1S4
155 e*01 READER-WSAS.
156 *'* OS FILLER PIC X(51) VALUE SPACES
157 OS TITLE PIC X(30)
158 * VALUE 'CONTENTS OF CREDIT MASTER FILE'.
159 * 15 FILLER PIC X(S1) VALUE SPACES
160 01 APPLICATION-DATA-WSB2.
141 0S NAM&-AND-ADDRESS-WS.
162 10 NAME-WS PIC X(20).
163 Oe 10 ADDRESS-VS.
164 * 15 STREET-WS PIC X(20).
165 ** 15 CITY-WS PIC X(]3).
166 S 1 STATE-VS PIC XX.
167 is* iS ZIP-WS PIC X(S).
168 10 ADDRESS-WS PIC X(40).
169 05 PHONE-WS .
170 10 AREA-CODE-WS PIC 9(3).
171 10 NUMSR-VS PIC X(S).
172 05 FILLER PIC X VALUE SPACE.

'3 173 05 CHANGE-CODE-WS PTC XX.
174 05 ACCT-WU-WS PtC 9(4).
175 OS CREDIT-INFO-VS.
176 10 SEX-VS PIC X.
177 0 83 MALE VALUE ON'.
178 *s 88 FWIAL VALUE 'F'.
179 10 FILLER PIC X.
180 10 MARITAL-STATUS-VS PIC X.
101 8 SINGLE VALUE $St.
182 **86 MARRIED VALUE 'NO.

I'183 88 DIVORCED VALUE '00.7 184 8 WIDOWED VALUE SW'.

183 10 FILLER PIC X.
186 10 NUmassR-DIPNS-wS PIC 9.
187 10 FILLER PIC X.
188 10 INCOMl-NUNDRIDS-WS PIC 9(31
169 10 FILLER PIC X.

1,

-I



168

190 10 YEARS-EMPLOYED-WS PIC 99.
191 10 FILLER PIC X.
192 10 OWN-OR-RENT-WS PIC X.
193 t8 OWNED VALUE '0'.
194 s 88 RENTED VALUE 'R*.
195 10 FILLER PIC X.
194 10 NORGAGE-OR-RENTAL-WS PIC 9(3).
197 10 FILLER PIC X.
198 10 OTHER-PAYMENTS-WS PIC 9(3).
199
200 01 UPDATE- ESSAGE-AREA-WS82.

[201 05 UPDATE-MESSAGE-AREA PIC MIS).•
i 202

203 01 CREDIT-MASTER-PR INT-L INt .

204 05 FILLER PIC X(4) VALUE SPACES.
205 05 CREDT-ASTER-OUT PIC X(128).
206
207 01 UPDATE-RECORD-PRIT-LINE .
208 05 FILLER PIC X(4) VALUE SPACES.
209 05 APPLICATION-DATA-OUT PIC X(102).
210 05 FILLER PIC X49 VALUE SPACES.
211 05 NESSAGZ-AREA-OUT PIC 99 VL).
212
213 01 DISCA-ITNCO14E-CALC-F Z LDS-WSC8 .

214 05 ANNUAL-INCOME-WS PIC 9(S).215 05 ANrNUAL-TAX-WS PIC 9(s).
216 05 TAX-RATE-WS PIC 9V99 VALUE 0.25.
217 OS MONTHS-IN-YEAR PIC 99 VALUE 12.
218 05 MONTHLY-NET-INCOME-WS PIC 9(4).,

219 05 MONTHLY-PAY4ENTS-WS PIC 9(4).
220 05 DISCR-INCOME-WS PIC S9(3).
221
222 01 CREDIT-LIMIT-CALC-FIELDS-WSC9.
223 05 CREDIT-FACTOR PIC 9.
224 05 FACTORI PIC 9 VALUE 1.
225 05 FACTOR2 PIC 9 VALUE 2.
226 05 FACTOR3 PIC 9 VALUE 3.

, 227 05 FACTOR4 PIC 9 VALUE 4.
228 05 FACTORS PIC 9 VALUE 5.
229 05 CREDIT-LIMIT-WS PIC 9(4).
230 05 UPPER-LIMIT-WS PIC 9(4) VALUE 2500.
231 * NEVER USED 1.
232 0 S TOTAL-CREDIT-GIVEN-WS PIC 9(7).
233
234 01 ASSEMBLE-TEL-NUM-WSDI.
235 05 TEL-NUMBR-WITR-HYPREN.
236 10 EXCHANGE-IN PIC 9(3).
237 10 FILLER PIC x.
238 10 FOUR-DICIT-MUMSR-IN PIC 94.
239 05 TEL-NUMOR-WITHOUT-HYPHEN.
240 10 EXCHANGE PIC 903).
241 10 FOUR-DIGIT-tUPBR PIC 9(4).
242
243 01 CARD-ERROR-LIN1-WS,
244 05 FILLER PIC X(S) VALUE SPACES.
245 Os FILLER PIC X(12)
246 VALUE #FIRST CARD .
247 05 FIRST-CARD-ERR1 PIC X(4). t

S24 05 FILLER PIC xx VALUE SPACES,
249 05 NAME-ERRI PIC 1(20).
250 05 ADDRESS-ERRI PIC X(40).
251 05 PHONE-ERRI PIC X(11).
252 05 FILLER PIC X(3) VALUE SPACES.
253 05 ACCT-NUN-ERRI PIC 9(M).

*ARM"



169

254
255 01 CARD- ERROR-LINE2-WS.
256 05 FILLER PIC X(5) VALUE SPACES.
257 05 FILLER PIC X(12)
258 VALUE 'SECOND CARD '.
259 05 SECOND-CARD-ERR2 PIC X(4).
260 05 FILLER PIC X(2) VALUE SPACES.
261 05 CREDIT-INFO-ERR2 PIC X(80).
262 OS MESSAGE-IRR-LZNE-2 PIC X(29) VALUE SPACES.
263
264 PROCEDURE DIVISION.
265
266 AO-MAIN-BODY.
267 PERFORM Al-INITIALIZE.
268 PERFORM A2-UPDATE-MASTER
269 UNTIL OLD-MASTER-RECORDS-LEPT - *NO
270 OR CARDS-LEFT - *NO ',
271 IF CARDS-LEFT - 'NO I
272 THERE ARE MORE OLD MASTER REC
273 PERFORM A3-COPY-REMAINING-OLD-KASTER
274 UNTIL OLD-MASTER-RECORDS-LEFT - 'NO
275 ELSE
276 * THERE ARE NO MORE CARDS, SO
277 PERFORM A4-ADD-REMAINING-CARDS
278 UNTIL CARDS-LEFT - 'NO .
279
280 * CODE TO LIST THE CONTENTS OF THE NEW MASTER HAS BEEN OMITTED.
281 * IT WOULD HAVE REQUIRED CLOSING THE NEW MASTER AND REOPENING
282 * IT FOR INPUT. THIS IS BEYOND THE ABILITIES OF CMS.1
283 * THE DELETION AMOUNTS TO ABOUT 20 LIKES Of CODE.
284 *
285 PERFORM A7-EKO-OF-JOB.
286 STOP RUN.
287
288 Al-INITIALIZE.
289 OPEN INPUT APPLICATION-CARDS-FILE
290 CREDIT-MASTER-OLD-FILE
291 OUTPUT CREDIT-MASTER-NEW-FILE
292 UPDATE-LISTING.
293 * USELESS INITIALIZATIONS HAVE BEEN COMMENTED OUT
294 * * OVE SPACES TO FIRST-CARD.
295 M MOVE SPACES TO SECOND-CARD.
296 ** M MOVE SPACES TO ACCT-NUM-HATCN.
297 MOVE SPACES TO PAIR-VALIDITY.
293 * M MOVE ZEROES TO ANNUAL-INCONE-WS.
299 * OVE ZEROES TO ANNUAL-TAX-WS.
300 * M* MOVE ZEROES TO MONTWL-NET-INCOME-WS.
301 * M MOVE ZEROES TO NONTHLY-PAYNSXTS-WS.
302 M MOVE ZEROES TO DISCR-INCONE-WS.
303 N* MOVE ZEROES TO CREDIT-FACTOR.
304 00* MOVE ZEROES TO CREDIT-LIMIT-WS.
305 * * OVE ZEROES TO TOTAL-CREDIT-GIWZN-WS.
306 MOVE 'YES' TO CARDS-LEFT.
307 MOVE #YES' TO NEXT-CARD-THIRE.
308 MOVE 'YES' TO OLD-ASTER-RNCORS-LEPT.
309 ** THE FOLLOWING STATEMENT WAS MOVED MERE FROMi THE END OF THE
310 " PARAGRAPH, SO THAT THE HEADER WOULD SE WRITTEN SEFORE THE
311 *0 FIRST LOG RECORD, IF THE FIRST CARD PAIR Is INVALID.
312 WRITE PRINT-LINE-OUT FROM LOG-IUADERI-WSA1
313 AFTER ADVANCING 3 LINES.! 314 READ APPLICATION-CARDS-FILB
315 AT END MOVE 'NO ' TO NEXT-CARD-TRERE.4'. 316 PERFORM B1-GET-A-PAIR-OF-CARDS-INTO-WS TINU I-EXIT.
317 * FIRST PAIR OF CARDS IN WSt FIRST CARD OF SECOND PAIR IN SUFFER

- .. ........



170

318 READ CREDIT-MASTER-OLD-F!LE
319 AT END MOVE 'NO' TO OLD-MASTER-RECORDS-LPT.
320 # FIRST OLD MASTER RECORD IS IN BUFFER
321
322 A2-UPDATE-MASTER.
323 * BEFORE COMPARING TUC UPDATE WITH THE MASTER, WE MUST CHECK
324 * THAT WE HAVE A VALID PAIR OF CARDS - IF YOUR PROGRAM DOES
325 * NOT MAKE THIS TEST. IT WILL ONLY WORK WITH VALID PAIRS OF
326 * CARDS.
327 IF PAIR-VALIDITY - 'BAD
328 PERFORM 81-GET-A-PA IR-OF-CARDS-INTO-WS THRU B1-EXIT
329 ELSE IF ACCT-NUM-WS IS GREATER THAN ACCT-NUM-MAS-OLD
330 *ACCT-NUM-WS IS CARD ACCOUNT NUMBER
331 MOVE CREDIT-MASTER-OLD-RECORD TO
332 CREDIT-MASTER-NEW-tECORD
333 WRITE CREDIT-MASTER-NEW-RECORD
334 READ CREDIT-MASTER-OLD-FILE
335 AT END MOVE 'NO I TO OLD-MASTER-RECORDS-LEFT
336 ELSE IF ACCT-NUM-WS - ACCT-NUM-MAS-OLD
337 PERFORM 82-CHANGE-OR-DELETE-MASTER
338 PERFORM Bl-GET-A-PAIR-OF-CARDS-INTO-WS THRU 51-EXIT
339 READ canDIT-MASTER-OLD-FILE
340 AT END MOVE 'NO I TO OLD-MASTER-RECORDS-LEFT
341 ELSE
342 * ACCT-NUM-WS IS LESS THAN
343 * ACCT-NUM-NAS-OLD
344 PERFORM B3-ADD-NEW-MASTER
345 PERFORM B1-GET-A-PArR-OF-CARDS-INTO-WS THRU 81-EXIT.
346
347 A3-COPY-REM4AINING-OLD-MASTER.
348 MOVE CREDIT-MASTER-OLD-RECORD TO
349 CREDIT-MASTER-NEW-RECORD
350 WRITE CREDIT-MASTER-NEW-RECORD.
351 READ CREDIT-MASTER-OLD-FILE
352 AT END MOVE 'NO ' TO OLD-MASTER-RECORDS-LEFT. .

353
354 A4-ADD-REMAINING-CARDS.
355 IF PAIR-\.ALIDITY - 'BAD ' NEXT SENTENCE
356 ELSE PERFORM 83-ADD-NEW-MASTER.
357 PERFORM Bl-GET-A-PAIR-OF-CARDS-INTO-WS THRU 81-EXIT.
358
359 A?-cNo-or-JOB.
3450 CLOSE APPLICATION-CARDS-FILE L
361 CREDIT-MASTER-OLD-FILE
3652 CREDIT-MASTER-NEW-FILEj363 UPDATE-LISTING.
364
365 B1-CET-A-PAIR-OFP-CARDS-INTO-WS.
366 If NEXT-CARD-THERE - 'NO
367 MOVE *NO ' TO CARDS-LEFT
368 GO TO SI-EXIT.-

if369 PERFORM ',EDIT-FIRST-CARD.
370 PERFORM C. -MOV-?IRST-CARD-FO-Wg.
371 READ APPLICATION-CARDS-FILE INTO CREDlT-tNFORMATIU-I1S

*372 AT END MOVE 'NO I TO CARDS-LEFT,
373 MOVE SPACES TO CREDIT-INFORMATION-IN
374 ACCT-HUM-MATCH
375 MOVEP 'NONE' TO SECOND-CARD
376 PERFORM C4-FLUSH-CARDS-TO-ERROR-LINES
3 77 GO TO 51-EXIT.
318 PERFORM C3-COIT-SCOND-CARD.

179 IF (FIRST-CARD a 'GOOD*)
)go AND (SECOND-CARD w 'GOOD')
,$I AND CACCT-NUM-MATCH a 'GOOD')

Popov-



171

392 MOVE 'GOOD' TO PAIR-VALIDItY
383 MOVE CREDIT-INFO-IN TO CREDIT-INrO-WS
304 ELSE
365 NOVI 'BAD 0 TO PAIR-VALIDITY
386 PERFORM C4-FLUSH-CARDS-O-RROR-LIIES.
387 READ APPLICATION-CARDS-FILE
388 AT END MOVE 'NO0 I TO NEXT-CARD-THER.
389
390 Si-EXIT. EXIT.

* 391
392 B2-CIIANCE-OR-DELETE-14ASTER.
393 IF CHANGE-CODE-WS a 'CHI
394 PERFORM CS-MERGE-UPDATE-WITH-OLD-M4AST
395 MOVE 'RECORD CHANGED# TO UPDATE-MESSAGE-AREA
396 PERFORM C6-LOG-ACTION
397 WRITE CREDIT-MASTER-NEW-RECORD
398 ELSE IF CHANGE-CODE-VS a ODE'
399 *CHECK IF DELETE IS VALID
400 IF CREDIT-INFO-VS IS EQUAL TO SPACES
401 MOVE 'RECORD DELETED# TO UPDATE-MESSACE-AREA
402 PERFORM C6-LOG-ACTION
403 ELSE
404 MOVE 'REC NOT DELETED' TO UPDATE-MESSAGE-AREA
405 MOVE CREDIT-MASTER-OLD-RECORD TO
406 CREDIT-MASTER-NEW-RECORD
407 PERFORM C6-LOG-ACTIO4
408 WRITE CREDIT-MASTER-NEW-RECORD
409 ELSE
410 MOVE 'BAD CHANCE CODE$ TO UPDATE-MESSAGE-AREA
411 MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-NEW-RECORD
412 PERFORM CS-LOG-ACTION
413 WRITE CREDIT-MASTER-NEW-RECORD.
414
415 B3-ADD-NEW-MASTER.
416 PERFORM CO-CALC-DISCRETNRY-INCOMEL.
417 PERFORM C9-CALC-CREDIT-LIMIT.
438 PERFORM CIO-ASSEMBLE-NEW-MASTER-RECORD.
419 MOVE 'RECORD ADDED I TO UPDATE-MESSAGE-AREA.
420 PERFORM CS-LOG-ACTION.

D~.421 WRITE CREDIT-MASTER-NEW-RECORD.
422
423 Cl-EDIT-FIRST-CARD.

~ f424 MOVE 'GOOD' TO FIRST-CARD.
f425 IF NAME-iN IS EQUAL TO SPACES

426 MOVE ''** NAME9 MISSING *** TO NAME-IN

428 IF ADDRESS-IN IS EQUAL TO SPACES
429 MOVE "**' ADDRESS MISSING **00 TO ADDRESS-IN
430 MOVE 'BAD I TO FIRST-CARD.
431 IT PHONE-IN IS EQUAL TO SPACES
432 MOVE 'No PHONE *0, TO PHONE-IN
433 MOVE 'BAD * TO FIRST-CARD.
434
435 C2-MOVt-FIRST-CAAD-TO-WS.
436 MOVE NAME-IN TO NAME-WI.
437 MOVE ADDRESS-IN TO ADDRESS-WI.' 1438 MOVE PHONE-IN TO PHONE-WI.
439 MOVE CHANGE-COD-IN TO CHANG%-CODE-WI.
440 MOVE ACCT-NUM-IN) TO ACCT-PIR-W6.
441
442 C3-9DIT-SCOMD-CARD.

1'443 MOVE 'GOOD' TO IECOMD-CARD.
444 MOVE 'GOOD' TO ACCT-NUM-NATC%.
445 IF CARD-TYPE-IN 1I NOT EQUAL TO 'CV



172L

446 MOVE #BAD 'TO SECOND-CARD.
447 IF ACCT-NM-rW2 IS NOT EQUAL TO hCCT-NUM-WS
448 MOVE 'SAO ' TO ACCT-NUM-MATCH.
449
450 C4-FLUSH-CARDS-TO-ERROR-LINES.
451 ROVE FIRST-CARD TO FIRST-CARD-ERRI.
452 move NAME-US TO KAME-ERRi.
453 MOVE ADDRESS-VS TO ADORESS-ERRI.
454 MOVE PHONE-US TO PHONE-ERRI.
455 MOVE ACCT-NUM-WS TO ACCT-NUM-ERRI.
456 MOVE SECOND-CARD TO SECOND-CARD-ERR2.
45' * MOVE CREDIT-INFO-VS TO CReorT-INFO-ERR2.
458 *'THE PREVIOUS LINE WAS IN ERROR (BY A SINGLE MUTATION) IN THE
459 '~PUBLISHED PROGRAM. THE CORRECT STATEMENT IS:
460 MOVE CREITr-INFO-IN TO CREDIT-INFO-ERR?.
461 IF ACCT-NUM-MATCH wo 'BAD
462 MOVE 'ACCOUNT NUMBERS DO NOT MATCH'
463 TO MESSAGE-ERR-LINE-2
464 ELSE
465 MOVE SPACES TO MESSAGE-ERR-LINE-?.
4:;G MOVE SPACES TO PRINT-LINE-OUT.
467 WRITE PRINT-LINE-OUT FROM CARD-ERROR-LINEI-WS
460 AFTER ADVANCING 3 LINES.
469 MOVE SPACES TO PRINT-LINE-OUT.
470 WRITE PRINT-LINE-OUT FROM CARD-ERROR-LINE2-WS
471 AFTER ADVANCING 1 LINES.
4;2
473
474 C S-MERGE-UPDATE-WI TN-OLD-MAST.
475 MOVE ACCT-NUM-MAS-OLD TO ACCT-NUN-MAS-NEU.
476 MOVE NAME-AND-ADDRESS-US TO NAME-AND-ADDRESS-MAS-NEW.
477 MOVE AREA-CODE-WS TO AREA-CODE-MAS-NEU.
478 PERFORM Dl-RENOVZ-HYPREN-FRON-TEL-NUM.
479 * THE SECOND INPUT CARD HAS CREDIT DATA, IF THIS HAS TO BE
480 lo UPDATED THEN THE DISCRETIONARY INCOME CALC HAS TO BE RUN
481 IF CREDIT-INFO-VS IS EQUAL TO SPACES
482 MOVE CREDIT-rNFO-MAS-OLD TO CREDIT-INFO-MAS-NEW
483 MOVE ACCOUNT-INFO-MAS-OLD TO ACCOUNT-INFO-MAS-NEW

*484 ELSE
485 PERFORM CB-CALC-DISCRETNRY-INCOMZ
4e6 PERFORM C9-CALC-CREDIT-LINIT

*487 MOVE SEX-US TO SEX-MAS-NEW
488 MOVE MARITAL-STATUS-VS TO MARITAL-STATUS-HAS-NEW
489 M4OVE NUMBSER-DEPENS-US TO NUMBER-DEPENS-MAS-NEW
490 MOVE INCOME-HUNDREDS-US To INCOME-HUNOREDS-MAS-NEW
491 MOVE YEARS-EMPLOYED-US TO YEARS-EMPLOYED-MAS-NEW

492 MOVE grIN-OR-REN?-VS TO OWN-OR-RENT-HAS-NEW (
493 MOVE MORGAGE-OR-RENTAL.-US TO MORCAGE-OR-RENTAL-MAS-NEW
494 MOVE OTHER-PAYMENTS-VS TO OTHER-PAYMENTS-HAS-NEW
495 MOVE DISCR-INCOME-US TO DISCR-INCOME-MAS-NEV
496 MOVE CREDIT-LIMIT-US TO CREDIT-LIMIT-MAS-NEW. Ll497 MOVE CURRENT-BALANCE-OWING-OLD TO CURRENT-SALANCE-OWING-NEW.
498 MOVE SPARE-CHARACTERS-OLD TO SPARE-CHARACTERS-NEW.
499
500 C6-LOG-ACTION.
501 IF CHANGE-CODE-US - 'CII'
502 WRUITE OLD TAPE RECORD
503 *WRITE CARD CONTENTS & MESSAGE
504 *WRITE NEW TAPE RECORD
505 * MOVE SPACES TO CREDIT-MASTER-PRINT-LINE [
S 06 MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-OUT
507 WRITE PRINT-LINE-OUT FROM CREDIT-MASTR-PRINT-LINE
so@ AFTER ADVAN4CING 3 LINES7
509 *' MOVE SPACES TO UPDATE-RECORD-PRINT-LINE

'lo



173

510 MOVE APPLICATIOIE-DATA-WS&2 TO APPLICATION-DATA-OUT
511 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
512 WRITE PRIN?-LINE-OUT FROM UPDATE-RECORD-PRINT-LINC
513 AFTER ADVANCING I LINES
514 * MOVE SPACES TO CREDIT-MASTER-PRINT-LINE

sis MOVE CREDIl-MASTER-NEW-RECORD TO CREDIT-MASTER-OUT

517 AFTER ADVANCING I LINES

520 *WRITECARD CONTENTS & MESSAGE
521 OVE PACE TOCREDIT-t4ASTER-PRINT-LINE

S22 OVECREIT-ASTE-OL-REORDTO CREDIT-MASTER-OUT
S3WRITE PRINT-LINE-OUT FROM CReDrT-MASTER-PRIN4T-LINE I

524 AFTER ADVAtJCING 3 LINES
525 MOVE SPACES TO UPDATE-RECORD-PRINT-LINE

526 MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT
527 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
528 WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE
529 AFTER ADVANCING I LINES
530 ELSE IF CHANGE-CODE-US - f

531 * WRITE CARDS FOR ADDITION
532 * WRITE NEW TAPE RECORD
533 * MOVE SPACES TO UPDATE-RECORD-PRINT-LINE
534 MOVE APPLICATION-VATA-WS82 TO APPLICATION-DATA-OUT
535 MOVE UPDATE-MFSSAGE-AREA TO MESSAGE-AREA-OUT
536 WRITE PRINT-LIe4E-OUT FROM UPDATE-RECORD-PRINT-LINE
537 AFTER ADVANCING 3 LINES
538 *' MOVE SPACES TO CREDIT-MASTER-PRINT-LINE
539 MOVE CREDIT-MASTER-NEW-RECORD TO CREDIT-MASTER-OUT
540 WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LrNE
541 AFTER ADVAN4CING 1 LINES
542
543 ELSE
544 WRITE CARD CONTENTS & MESSAGE
545 MOVE APPLICATION-DATA-WS82 TO APPLICATION-DATA-OUT
546 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
547 WRITE PR! NT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE

549 AFTER ADVANCING 3 LINES.
549
550 CO-CALC-DISCRETNRY-INCOME.
551 COMPUTE ANNUAL-INCOME-WS a INCOME-HUNDREDS-US * 100.

552 COMPUTE ANNUAL-TAX-US - ANNUAL-INCOME9-WS * TAX-RATE-WS.
553 COMPUTE MONTHLY-NET-INCOME-US ROUNDED
554 a (ANNUAL-INCOME-US - ANNUAL-TAX-US) / MONTHS-IN-YEAR.
555 COMPUTE MONTHLY-PAYMENTS-WS - MORGAGE-OR-RENTAL-WS
556 + OTREP-PAYMENTS-WS.
557 COMPUTE DISCR-INCOME-WS a MONTHLY-NET-INCOME-US
558 - MONTHLY-PAYMENTS-US
599 0N SIZE ERROR MOVE 999 TO DISCR-INCOME-WS.
560 * DISCRETIONARY INCOMES OVER 6999 PER MONTH ARE SET AT S999.
561
562 C9-CALC-CREDtT-LINIT.
563 * MARRIED? Y Y Y Y N N N N THIS DECISION TABLE
564 * OWNED? Y YN NY YNmN SETS OUT COMPANY POLICY
565 * 2 OR MORE YEARS? Y N Y N YV NY N FOR DETERMINING CREDIT*
566 *-------------------------------------------LIMIT FROM DISCRETIONARY'
567 * CREDIT FACTORI x x INCOME. FACTORI ETC ARE

546 * LIMIT 2 x x SET UP IN USC9.
569 * M4ULTIPLE 3 X
570 * or DISCR. 4 x x' '571 * INCOME 5 x
572 If MARITAL-STATUS-WS *M

573 IF OWN-OR-RENT-WS 106O



174L

574 IF YEARS-EMPLOYED-VS IS NOT LESS TH1AN 02
S5 MOVE FACTORS TO CREDIT-FACTOR
576 ELSE
577 MOVE FACTOR4 TO CREDITFtACTOR
578 ELSE
579 IF YEARS-EMPLOYED-VS IS NOT LESS TH1AN 02
580 MOVE FACTOR4 TO CRgDIT-FACTOR
S81 ELSE
582 MOVE FACT012 TO CREDIT-FACTOR
583 ELSE
584 1? ON-OR-RENT-WS - 00
585 IF YEARS-EMPLOYED-VS IS NOT LESS T1HAN 02
586 MOVE FAC?0R3 TO CREDIT-FACTOR

587 -ELSE

588 MOVE FAC?0R2 TO CREDIT-FACTOR
589 ELSE
590 MOVE FACTORI TO CREDIT-FACTOR.
591 COMPUTE CREDIT-LIMIT-VS a DISCR-INCOME-VS * CREDIT-FACTOR.

592 IF CREDIT-LIMIT-WS IS GREATER THAN UPPER-LIMIT-VS

593 MOVEUPPER-LIMIT-VS ro CREDIT-LIMIT-VS.

591 C10ASSEB EN-MASTER-RECORD.
597 MOVE ACCT-NUM-WS TO ACC?-HUM-PAS-l4EW.

598 MOV NAE-AND-ADDRESS-WS TO NAMlE-AND-ADDRESS-MAkS-N LV.
599 OVEAREACOD-WSTO AREA-CODE-MAS-4EW.

601 MVE SX-WSTO SEX-MAS-NEW
02 MOVE MARITAL-STATUS-VS TO MARITAL-STATUS-MAS-NEW
63 MOVE NUMBER-DEPENS-WS TO NUMBER-OEPEMS-MAS-NEW
64 MOVE INCOME-HUNDREDS-VS TO INCOME-HUNDREDS-MAS-NEW
65 MOVE YEARS-EMPLOYED-WS TO YEARS-EMPLOYED-MAS-NEW
66 MOVE OWN-OR-REMT-WS TO OVN-OR-RENT-AS-NEN
607 MOVE MORCAGE-OR-RENTAL-WS TO MORGAGE-OR-RENTAL-MAS-NEVd
08 MOVE OTRER-PAYT4ENTS-WS TO OTHER-PAYMENTS-MAS-NEW.
609 MOVE DISCR-INCOME-WS TO DISCR-INCOME-MAS-NEW.

610 MOVE CREDIT-LIMIT-WS TO CREDI?-LIMIT-HAS-NEW.
611 MOVE ZEROES TO CURRENT-BALANCE-OEING-NEV.
612 MOVE SPACES TO SPARE-CNARACTERS-NEV.
613

.3614 Dl-REMOVE-HYPHEN-FRON-TZL-NUM.
615 MOVE NUM3R-WS TO TEL-NUMOR-WITH-IYPREN
616 MOVE EXCHANGE-IN TO EXCHANGE
617 MOVE FOUR-DIGIT-HUMSR-IN TO FOUR-DIGI?-WUMSR
618 MOVE TEL-NUMBR-WI IIOUT-HYPHZN TO NUMIR-MAS-NEW.
gp 19

I V



BIBLIOGRAPHY

[1] A. Acree, T. Budd, R. DeMillo, R. Lipton, and F.
Sayward, "Mutation Analysis", Georgia Institute of
Technology Technical Report GIT-ICS-Tq/09, September,
1979.

[2] Fortran Automated Verification System (FAVS), Volume I,
User's Manual, General Research Corp., Santa Barbara,
Ca., Jan. 17q.

(3] D. Baldwin and F. Sayward, "Heuristics for Determining
Equivalence of Program Mutations," Yale University,
Department of Computer Science Research Report, No.
276, 197q.

(4] R.S. Boyer, B. Elspas, and K.N. Levitt, "SELECT - A
Formal System for Testing and Debugging Programs by
Symbolic Execution", in Proc. Int. Cor.t. on Reliable
Software, Apr. 1Q75, pp 234-244.

[5] T. Budd, R.A.DeMillo, R.J. Lipton, and F.G. Sayward,
"The Design of a Prototype Mutation System for Program
Testing," Proc. 1979 NCC, kFIPS Conference Record, pp.
523-627.

(] T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G.
Sayward, "Theoretical and Empirical Studies in Program
Mutation to Test the Functional Correctness of
Programs", submitted for publication, lq7q.

[7 J. Burns, "The stability of Test Data from Program
Mutation," Digest for the Workshop on Software Testing
and Test Documentation , Fort Lauderdale, Fla, 1q78,
pp. 324-334.

(81 L.A. Clark, "A system to Generate Test Data and
Symbolically Execute Programs", IEEE Transactions on
Sofeware Engineering, Vol 2, Sept '75,pp 215-222.

(q] L.A. Clark, *Automatic Test DAta Selection Techniques",
Software Testing, Volume 2, Infotech International,

I;Iq~q, pp 43-53.

(101 R.A. DeMillo, R.J. Lipton and A.J. Perlis, "Social
Processes and Proofs of Theorems and Programs," CACM,
Vol 22(5), (May, lq79), pp. 271-280.

I -"-~N' m



176[

(111 R.A. DeMillo, R.J. Lipton and F.G. Sayward, "Hints
on Test Data Selection:Help for the Practicing
Programmer," Computer,
April, 1978, pp. 34-41.

(121 R.A. DeMillo, R.J. Lipton and F.G. Sayward, aProgram
Mutation: A New Approach to Program Testing,* INFOTECH
State of the Art Report on Software Testing, V. 2,
INFOrECH/SRA, 1974, pp. 107-127 LNote: also see
commentaries in Volume 1].

[131 T. Gilb, Software Metrics, Winthrop, 1q77.

[141 J. Goodenough and S. Gerhart, "Toward a Theory qptTest Data Selection," IEEE Trans. Software Engin., VolSE-i , (June, 1q75), pp. 156-173.

[151 Concepts of Automated Testing Analysis, (RP-1),
Software Technology Center, Science Applications, Inc.,
San Francisco, Ca.

[16] W.E. Howden, "Reliability of the Path Analysis Testing
Strategy," IEEE Trans. Software Engineering, Vol.
SE-2(3) (September, lq76j, pp. 203-214.

[17] W.E. Howden, "An Evaluation of the Effectiveness of
Symbolic Testing," Software Practice and Experience,
Volume 8, (Iq78), pp. 381-397.

(181 "A New Approach to Program Testing", in Proc. Int.
Conf. Reliable Software, Apr. 1975, pp 228-233.

(191 R.J. Lipton and F.G. Sayward, "rhe Status of Research
on Program Mutation," Digest of the Workshop on
Software Testing and Test Documentation," Fort
Lauderdale, Fla, 1978, pp. 355-373.

(201 Z. Manna and R. Waldinger, "The Logic of Computer
Programming", IEEE Transactions on Software
Enqlneering, Vol SE-4(3), (September, 1978, pplQQ-229 .

(211 W.D. Maurer, letter in OACM Forum", CommunicatLons of
the ACM, vol. 22 no. 11, Nov 197q, pp 525-52q.

(221 E.F. Miller, Jr., Methodology for Comprehensive
Software Testinq, General Research Corporation, Santa
Barbara, CA, June 1975

[23] D.C. Montgomery, Design and Analysis of Experiments,
Wiley, New York, 1473

R



177

(241 L.J. Osterweil and L.D. Fosdick, "Experience with
DAVE.-- A Fortran Program Analyzer, Proc. 1976 NCC,
AFIPS Conference Record, pp 909-915.

(25] L.J. Osterweil and L.D. Fosdick, *Data Flow Analysis
as an Aid in Documentation, Assertion Generation,
Validation and Error Detection, University of Colorado,
Department of Computer Science, Technical Report No.
CU-CS-055-74, 1974.

(26 R.A. Overbeek and W.E. Singletqary, ANS Cobol: A
Pragmatic Approach, McGraw-Hill, New York, 1975.

(271 M.R. Paige, *Program Graphs, an Algebra, and Their
Implication for Programming", IEEE Transactions on
Software Engineering, Sept.75, pp286-2 9 1.

(28] PRIME Fortran Programmer's Guide, PDR3057, PRIME
Computer, Inc. Framingham,. Mass. p 4-5.

(29] J.H. Rowland and P.J. Davis, "On the use of
Trancendentals for Program Testing", March 1q79,
submitted to JACM.

[30] Automated Testing Analyzer for Cobol, Software
Technology Center, Science Applications, Inc. San
Francisco, Ca., April, 1975.

[311 T.A. Thayer, 4. Lipow, E.C. Nelson, Software
Reliability, North-Holland, 1973.

[321 E.A. Youngs, "Human Errors in Prog ram ing,
International Journal of Man-Machine Studies, Volume 5
(1974), pp. 361-376.

(33] Ew. Yourdan, C. Gane, and T. Sarsan, Learning to
Program in Structured Cobol, Yourdan, Inc., New York,
1975

( [34] 1. Williams, "Program Checking", Proceedings of the
SIGPLAN Symposium on Compiler Construction, Denver,
Colorado, in SIGPLAN Notices, Vol.14(8), Aug 1979, pp

L13-25.

04



SECURITY CLASSIFICATION OF THIS PAGE (WPtoe Date Enta'.E)

REPORT DOCUMENTATION PAGE BFRE COMTRLTINSOR

TREPORT NUMBER 2. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBER

GIT-ICS-80/12 Ae
4. TITLE (awd ubtitie) S YEO EOT&PRO OEE

On Mutation Interim Technical Report
G. PERFORMING ORG. REPORT NUMBER

GIT-ICS-80/12
7. S.HO~s CONTRACT OR GRANT NUMUERWa)

AUTHOR~)AO Grant #DAAG29-8O-C-0120
Allen Tray Acree, Jr. ONR Grant #N00014-79-C-0231

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK
AREA II WORK UNIT NUMBERSSchool of Information and Computer Science ~

Georgia Institute of Technology
Atlanta, Georgia 30332

11. CONTROLLING OFFICE NAME AND ADDORESS 12. REPORT OATE

#1v6-vSsr* /fit*
13. NUMSER-OfrPAGES

Resc:: -72)177+yi
14. MONITORING AGENCY NAME a ADDRESS(If differeunt from, Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
ISO. DCCL ASSI FIC ATION/! DOWNGRADING

SCHEDOULE

1S. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A

S. Approved for public zeee

17. DISTRIBUTION STATEMENT (of the abstract antered Eu Block 20. Il dIfferent fto R~pr)

ISI. SUPPLEMENTARY NOTES IN')

19. KEY WORDS (Continue on reverse side it necessar and Iden~tify by. block number)

competent programmer assumption, coupling hypothesis, mutant equivalence,
mutation, testing, validation

12,AmTrIACr Ct I=860 .. is sver flNV nomeem Md IdWeua by bleak a"e)
Program Mutation is a method for testing computer programs which is effective at
uncovering errors and is less expensive to apply than other techniques. Working
mutation systems have demonstrated that mutation analysis can be performed at an
atrciecs nraitcporm.I hswrteefcieeso h
method is studied by experiments with programs in the target application spaces.

Dt j0,,u onm rmve soeI~
DOa-*evowotu~ s aOSLT



DAT-I


